
GXS EDI Services

Expedite for Windows Software
Development Kit Programming Guide
Version 6 Release 2

GC34-3285-02

Fifth Edition (November 2005)

This edition replaces the Version 6.1 edition.

© Copyright GXS, Inc. 1998, 2005. All rights reserved.
Government Users Restricted Rights - Use, duplication or disclosure restricted.

.
Contents

To the reader . ix
What this book covers . ix
Who should read this book . ix
How this book is organized . x
Type conventions . xi
Related books . xi

Chapter 1. Introducing Expedite for Windows . 1
Understanding Information Exchange . 1
Understanding the Expedite for Windows model . 2
Understanding the Expedite for Windows components . 3

Request Manager . 4
Protocol handler . 5
Graphical user interface . 5
C-language interface . 6
Java interface . 6

Defining Expedite for Windows objects . 7
Defining Expedite for Windows databases . 8
Defining hardware and software requirements . 9

Supported compiler . 9

Chapter 2. Getting Started . 11
Using the Expedite for Windows GUI . 11
Writing your own interface . 11
© Copyright GXS, Inc. 1998, 2005 iii

Software Development Kit Programming Guide
Distributing your project to users . 12
Creating and exporting your project . 12
Installing the project . 12
Configuring the project . 12

Programming experience requirement . 13
Understanding the C-language interface files . 13

EXPC32.H header file . 13
expc32m.lib link library . 14

Building the sample program . 14
Deleting the sample project and address . 15

Chapter 3. Using the Expedite for Windows graphical user interface . 17
Using the GUI during setup . 17
Setting up a project . 19
Using the address book . 19

Using distribution lists in the address book . 20
Working without an address book . 20
Using trading profiles . 20
Setting up unattended sessions . 21

Chapter 4. Programming to the C-language interface . 23
Input structures . 23

Initializing the structure . 23
Replacing values in the structures . 24
Input structure naming conventions . 24
Case sensitivity in input fields . 25

Output structures . 25
List functions . 26

Returning entries . 27
Qualifying a list . 28

Response structure arrays with multiple kinds of objects . 29
Allocating space . 31

Evaluating the results of a function call . 31
Managing Information Exchange sessions . 32

Interactive sessions . 32
Interactive session recovery . 33

Unattended sessions . 33
Unattended session recovery . 34
Manual session recovery . 36
Automated session recovery . 38

Displaying session status . 38
iv

Contents
Chapter 5. Programming to the Java interface . 39
Overview of the Java interface . 39

Comparing the C-language interface and the Java interface . 40
Using Java native methods . 40
Example of Java interface code . 41

Handling errors . 43
Compiling and running the sample Java programs . 43

Compiling and running sample programs with the JDK . 44
Compiling and running sample programs with VisualAge . 45

Using the sample GUI program . 45
Launching the program . 46
Using the Address option . 48
Using the Send File option . 49
Using the Receive File option . 50
Using the Receipt window . 52

Using the sample console programs . 53
SendFile prompts . 53
ReceiveFile prompts . 54

Database classes and methods for each class . 56

Chapter 6. Sending and receiving files with Expedite for Windows . 57
Preparing to send and receive files . 57
Processing in an unattended session . 58
Processing in an interactive session . 58
Planning for problem determination . 58
Using unattended (batch) sessions . 59

Creating unattended sessions . 59
Viewing processing results . 59
Example of an unattended session . 60

Using interactive sessions . 62
Session recovery for interactive sessions . 63
Example of an interactive session . 63

Addressing files . 65
Using nicknames . 65
Using account IDs, user IDs, and system IDs . 65
Using centralized Information Exchange alias tables . 65
Using distribution lists . 66

Sending and receiving e-mail . 66
Creating an e-mail file . 66
Sending an e-mail file . 67
Receiving an e-mail file . 67
v

Software Development Kit Programming Guide
Sending and receiving ASCII text files . 67
Sending and receiving ASCII binary files . 68
Understanding the translate table . 68

Using an alternate translate table . 69
Understanding recovery levels . 70
Post-session processing for checkpoint-level and file-level recovery 72

Resetting sessions after recovery . 72
Example of a session reset . 73

Restarting and canceling sessions after recovery . 74
Checkpoint-level recovery and receipts . 74

Post-session processing for session-level recovery . 75
Overwrite options . 75
Receiving multiple files . 76

Using Expedite.ini to create file names for multiple files . 77
Receiving specific files . 77

Receiving files from a specific time . 77
Receiving a single, specific file . 78

Chapter 7. Sending and receiving EDI data with Expedite for Windows 79
Understanding how Expedite sends EDI data . 79

Specifying addresses . 80
Transmitting EDI envelopes . 80

Using EDI envelopes . 81
Resolving EDI destinations . 82

Providing destination address information in tables . 83
Bypassing tables . 84

EDIFACT or X12 data . 84
UN/TDI data . 85
Intersystem addressing . 85

Using tables for UCS data . 86
How Expedite determines destinations without tables . 86

Using EDI destination tables . 87
Creating destination tables . 88
Naming destination tables . 89
Sending EDI data using a destination table . 89

Example of sending EDI data with destination table . 90
Using EDI qualifier tables . 90

Example of sending EDI data with qualifier table . 91
Using centralized Information Exchange alias tables . 92

Sending EDI data with a centralized alias table . 92
Example of sending EDI data with centralized alias table . 93
vi

Contents
Using Information Exchange distribution lists . 93
Example of sending EDI data to a distribution list . 94

Specifying Information Exchange control fields . 95
Providing a message name . 95
Providing a message sequence number . 96
Providing a user class . 97

User class for EDIFACT and UN/TDI data . 97
User class for X12 and UCS data . 97

Inserting blanks following EDI segments . 97
Using Expedite order receipts . 97

Receiving EDI data . 98
Specifying automatic EDI processing . 98
Specifying CRLF characters . 99
Specifying only EDI data to be received . 99

Creating tables for destination resolution . 100
Understanding the EDI qualifier table entry format . 100

Example of a qualifier table entry . 101
Understanding the EDI destination table entry format . 102

Example of an EDI destination table entry . 103

Appendix A. Code examples . 105
Scenario 1 . 105
Scenario 2 . 110
Scenario 3 . 112
Scenario 4 . 114
Scenario 5 . 115
Scenario 6 . 116
Scenario 7 . 118
Scenario 8 . 120
Scenario 9 . 122

Glossary . 125

Index . 133
vii

Software Development Kit Programming Guide
viii

.
To the reader

The term network is used in this book to refer to the worldwide communications
network infrastructure provided by AT&T Global Network Services.

What this book covers
Expedite for Windows is a communications component of EDI Services, formerly
IBM EDI Services. Expedite for Windows enables you to transmit data files and
messages to trading partners through Information Exchange, the mailbox component
of EDI Services.

This book explains how to program to the Expedite for Windows C-language appli-
cation programming interface (API) and details other required information necessary
to use Expedite for Windows for your company’s applications.

This book also explains how to use the IBM-provided Java programming appli-
cation to enable you to use Java to write programs for Expedite for Windows.

Who should read this book
This book is intended as a guide for programmers who want to use the Expedite for
Windows C-language interface and graphical user interface. It is assumed that you
understand C programming and have experience writing C applications. To write an
interface to Expedite for Windows using the C-language interface, you should be
familiar with dynamic link libraries (DLLs) under Windows and have a clear under-
standing of arrays, pointers, and pointers-to-pointers. It is also assumed that you are
familiar with Java programming if you intend to use the provided Java sample
programs.
© Copyright GXS, Inc. 1998, 2005 ix

Software Development Kit Programming Guide
How this book is organized
The book has the following chapters.

■ Chapter 1, “Introducing Expedite for Windows,’’ provides basic information on
Information Exchange, Expedite for Windows components and protocols, and
hardware and software requirements.

■ Chapter 2, “Getting Started,’’ provides sample information and explains the
sample code provided in the product.

■ Chapter 3, “Using the Expedite for Windows graphical user interface,’’ provides
information for using the project and address book functions with your trading
partners.

■ Chapter 4, “Programming to the C-language interface,’’ provides information for
creating programs with the C-language interface to use Expedite for Windows
from your applications.

■ Chapter 5, “Programming to the Java interface,’’ provides information for
creating programs with the Java interface to use Expedite for Windows from your
applications.

■ Chapter 6, “Sending and receiving files with Expedite for Windows,’’ provides
information and examples for using send and receive functions in Expedite for
Windows and processing procedures for recovering after errors.

■ Chapter 7, “Sending and receiving EDI data with Expedite for Windows,’’
describes how you can use Expedite to send and receive data formatted for
electronic data interchange (EDI).

■ Appendix A, “Code examples,’’ describes several scenarios that you may
encounter in your work with your company’s applications. Review each scenario
to see if you can use the coding example.

This book also contains a notices section, a glossary, and an index.
x

To the reader
Type conventions
The following type conventions are used in this book:

■ Programming examples are in a monospaced font.
■ Field names are in mixed case.
■ Function names are in bold mixed case.
■ Commands are in capital letters.
■ Anything you are to type is in bold.
■ Glossary words are in italics the first time they are used in this book.

Related books
You may find it helpful to refer to the following publications when performing the
tasks described in this book:

■ Expedite for Windows Software Development Kit Programming Reference,
GC34-3284 (available on product CD-ROM)

■ Expedite for Windows User’s Guide, GC34-2341 (available on product CD-
ROM)

■ Information Exchange Mailbox Command Reference, GC34-2260

■ Information Exchange Messages and Formats, GC34-2324

■ Information Exchange Message Charges Reference, GX66-0653

These books are also available on the library page of the EDI Services Web site at
http://www.gxsolc.com/edi_bes.html.
xi

Software Development Kit Programming Guide
xii

© Copyright GXS, Inc. 1998, 2005
Chapter 1
.
Introducing Expedite for Windows

Expedite for Windows provides a complete messaging management system that inter-
faces with the Information Exchange product from your environment. Information
Exchange, the mailbox component of EDI Services, formerly IBM EDI Services,
enables you and your trading partners to exchange messages and files, such as
electronic data interchange (EDI) files.

With Expedite for Windows, you can use the graphical user interface (GUI) to easily
complete tasks, such as setting up address books or handling problems with Infor-
mation Exchange sessions. However, if you want direct control over a session
between Expedite for Windows and Information Exchange, you can use the C-
language interface or the Java interface.

The following sections provide information about the Expedite for Windows and
Information Exchange environments.

Understanding Information Exchange
Information Exchange provides a means of sending, storing, and retrieving infor-
mation electronically, and enables users on dissimilar computer systems to commu-
nicate with one another. By establishing a computer-to-computer communication
network between different locations, Information Exchange can speed and simplify
the delivery of files, EDI envelopes, and other data.

Information Exchange is an alternative to direct computer-to-computer communi-
cation. You can send files to an Information Exchange mailbox and retrieve waiting
files from the mailbox.
1

Software Development Kit Programming Guide
Through the network, Information Exchange links geographically scattered locations
of a single company or different companies. A manufacturing company in one
geography, for example, can use Information Exchange to communicate with its
suppliers or distributors in various other geographies.

To connect to Information Exchange, you need two corresponding sets of account
IDs, user IDs, and passwords:

■ The first set allows you to log on to the network. The individual fields in this set
are the network account ID, user ID, and password.

This information is configured and stored in the AT&T Global Network Dialer.

■ The second set allows you to log on to Information Exchange. The individual
fields in this set are the Information Exchange account ID, user ID, and
password.

This information is configured and stored in Expedite for Windows.

Understanding the Expedite for Windows model
The Expedite for Windows graphical user interface is a set of interrelated elements,
referred to as stations, that perform functions similar to those of a shipping and
receiving center, such as:

■ Preparing a shipping order

■ Specifying the sender and receiver

■ Choosing whether a shipment includes a single item or groups of items

■ Choosing how and when to send a shipment

■ Tracking a shipment

The graphical user interface uses common, easy-to-recognize graphical controls and
objects. You do not have to learn the system’s underlying functions in order to use
Expedite for Windows.

You will find more information about using the GUI in Chapter 3, “Using the
Expedite for Windows graphical user interface.’’
2

Chapter 1. Introducing Expedite for Windows
Understanding the Expedite for Windows components
The following sections provide a brief overview of the main components of Expedite
for Windows, which are:

■ Request Manager

■ Protocol handler

■ Graphical user interface

■ C-language interface

■ Java interface

You can access Information Exchange as shown in Figure 1. The figure shows how
Expedite for Windows, installed on your system with your user applications, commu-
nicates with the network and Information Exchange through a modem or leased line.

Figure 1. Expedite for Windows components

User’s Java
Application

Java
Interface

User’s
C or C++

 Application

Expedite for Windows
C-language interface

Information
Exchange
Protocol
Handler

Request
Manager

Information
Exchange

Graphical
User Interface

IPC Network
Connections

Interprocess Communication (IPC)
3

Software Development Kit Programming Guide
Request Manager
Request Manager is the main component of Expedite for Windows. It manages the
databases containing information on Information Exchange sessions, data sent and
received, and the profiles (application, user, and trading). Request Manager manages
your sessions and communications between the Expedite for Windows interfaces and
Information Exchange. You can use any of several interfaces (one at a time) to
Request Manager, and your selection has no affect on the operation of Request
Manager.

Request Manager does not handle user data; it only manages information about
databases (where user data is stored) and sessions (where and when user data was
sent). However, the protocol handler, as described on page 5, does access user data for
sending, receiving, or special formatting.

Request Manager communicates with the interfaces and the protocol handler over
Interprocess Communications (IPC), using a proprietary platform and implemen-
tation-independent language. To write an interface to Request Manager, you must use
the C-language interface.

Request Manager handles requests such as:

■ Start an Information Exchange session to send or receive a file

■ Add an entry to an address book

■ Update an Expedite for Windows configuration file

For some requests that involve a protocol handler and a session with Information
Exchange, Request Manager maintains a record of the request and the results of the
request. For other requests, such as creating an address book and adding an address,
Request Manager takes action immediately and does not keep a record.

Request Manager supports projects that allow multiple users or applications (one at a
time) to access a single copy of Expedite for Windows. A project identifies an infor-
mation set that includes address book and mailbox databases, as well as information
about the application or user that owns the project.
4

Chapter 1. Introducing Expedite for Windows
Protocol handler
The Expedite for Windows protocol handler gets commands (requests) from Request
Manager through IPC and translates them to the Information Exchange protocol;
unlike a similar function in Expedite Base for Windows that gets commands from
free-format syntax files. The protocol handler accepts responses from Information
Exchange, translates them to the Request Manager protocol, and delivers them over
IPC, instead of writing them to an output file as does Expedite Base for Windows.

Your application does not need to start the protocol handler, because applications
interface with Request Manager through the C-language interface and do not commu-
nicate directly with the protocol handler.

The protocol handler manages checkpoint-level restart with Information Exchange
through its control files that are stored in the CONTROL subdirectory under the
install directory.

Although the protocol handler manages session restart, Request Manager is respon-
sible for managing Information Exchange account IDs and user IDs. If a session is in
restart state, Request Manager does not allow another dropoff box with the same
account ID and user ID to be processed. Information about whether an account ID and
user ID is disabled or enabled is stored in the project database. An application can use
the ExpListIeLogon function of the C-language interface to see if any of the logon
IDs are disabled. For more information on this function, see the Software Devel-
opment Kit Programming Reference.

With the protocol handler component separate from Request Manager, Expedite for
Windows allows data transfer to run in the background freeing users to perform other
tasks.

Graphical user interface
The Expedite for Windows graphical user interface (GUI) is designed to run on
Windows 95, Windows 98, or Windows NT. The GUI uses Request Manager services
in the same way as does the C-language interface.

You can use the GUI to easily resolve Information Exchange session problems.
Without using your application software, you can perform tasks in the GUI such as:

■ Updating your address book

■ Creating trading profiles

■ Setting up dropoff boxes
5

Software Development Kit Programming Guide
C-language interface
The C-language interface has a consistent naming convention for functions and struc-
tures. This makes it easier for you to find information about the interface and to
remember the names of functions and structures while programming. All the
functions work in a similar manner, whether you use them to add an object to a
Request Manager database or implement a function of Information Exchange, such as
send or receive.

The Expedite for Windows C-language interface works with one or more dynamic
link libraries (DLLs) to link into your application. It contains structures that define
parameter values to pass to Request Manager and to process responses from Request
Manager.

You can use the C-language interface to set up a batch session, handle an interactive
session with Information Exchange, or work with Request Manager services for:

■ Opening and closing databases

■ Adding, replacing, or deleting items in a database

■ Creating or listing sets in a database

■ Adding, deleting, or listing items in a set

■ Processing a dropoff box

■ Managing an interactive session with Information Exchange

For more information, see Chapter 4, “Programming to the C-language interface.’’

Java interface
The Java interface gives Java programmers the ability to write Java programs to
control Expedite for Windows through the existing C-language interface. Java
programs can be written and compiled with either the Java Development Kit (JDK)
by Sun Microsystems or with VisualAge® for Java; Expedite for Windows includes
sample programs for each.

For more information, see Chapter 5, “Programming to the Java interface.’’
6

Chapter 1. Introducing Expedite for Windows
Defining Expedite for Windows objects
Expedite for Windows objects are provided in the appropriate format for either the
GUI or the C-language interface. These objects correspond to the electronic shipping
and receiving metaphor, as follows:

■ Project

A project allows multiple users or applications (one at a time) to access the same
copy of Expedite for Windows. A project represents one user or application, or
one user’s set of related tasks in Expedite for Windows. Each project has a name,
creator, and description. Each project has its own address book database, mailbox
database, and project configuration. Projects are designed to be flexible enough
to meet your needs for managing multiple users or applications on a single instal-
lation.

■ Address book

The address book allows you to store trading partner information commonly
found in an address book, such as names, addresses, phone numbers, and fax
numbers. You can set up a nickname for each of your trading partners and relate
this nickname to an Information Exchange address or other address book infor-
mation.

■ Order

An order represents an Expedite command in Expedite for Windows.

■ Order shelf

The order shelf automatically stores all the orders you create until you delete
them. The order shelf set is provided with Expedite for Windows and includes no
orders initially.

■ Dropoff box

A dropoff box represents a session with Information Exchange. Once orders are
created, you can place them in a dropoff box for processing. You can select a
copy of an order from the order shelf to copy into a dropoff box at any time. The
dropoff box object is similar to the input message file in Expedite Base for
Windows.
7

Software Development Kit Programming Guide
■ Order receipt

An order receipt shows the results of a processed order. This corresponds to a
record in the output file in Expedite Base for Windows.

■ Receipt shelf

The receipt shelf is the set, or composite, of all receipts in the mailbox database.
The receipt shelf set is provided with Expedite for Windows and includes no
receipts initially.

■ Session receipt

A session receipt provides information about the Information Exchange session.
It is similar to the session start and session end records in Expedite Base for
Windows. The session receipt includes a set of order receipts.

■ Trading profile

A trading profile provides a set of default information associated with a receiver
to be used to configure send orders. You can create an order with a special
configuration that overrides the receiver’s trading profile.

Defining Expedite for Windows databases
The Expedite for Windows databases are organized as follows:

■ Address book

The address book database contains addresses, distribution lists, and trading
profiles. An address or distribution list can have only one trading profile
associated with it. A trading profile can have many addresses or distribution lists
associated with it.

■ Project

The project database has records that contain information about the current
projects defined to Expedite for Windows. The project database contains the
network account ID, user ID, and password.

■ Mailbox

The mailbox database has records that represent orders and receipts for
processed orders.
8

Chapter 1. Introducing Expedite for Windows
Defining hardware and software requirements
Expedite for Windows is intended to run on any PC or workstation hardware that
supports Windows 95, Windows 98, or Windows NT 4.0.

The minimum required configuration is a 120 Mhz Pentium workstation with 16 MB
of memory. The required disk space is 29 MB without the books, or 37 MB with the
books installed. The Software Development Kit requires 2 MB, for a total disk space
of 39 MB.

Supported compiler
The sample makefiles provided are for use with the Microsoft Visual C++ 6.0
compiler. Inside the makefiles are the definitions for the type of compiler option flags
and linker option flags used to compile the sample programs. You can use these
definitions and compiler options as guidelines for creating makefiles to compile your
application.

If you are using a compiler other than Microsoft, refer to your compiler documen-
tation on how to link a DLL to your application.
9

Software Development Kit Programming Guide
10

© Copyright GXS, Inc. 1998, 2005
Chapter 2
.
Getting Started

Expedite for Windows includes a graphical user interface (GUI) that you can use for
most of the functions of the application. However, if this GUI does not meet the needs
of your users, you may want to write your own interface.

Using the Expedite for Windows GUI
You can use the Expedite for Windows GUI to view your application’s project config-
uration and to do problem determination if necessary. If you install the GUI with your
application, GXS Community Support can provide assistance to your users if needed.
You can enable your users to do problem determination with the GUI; however, by
using project passwords, you can prevent them from changing your project configu-
ration. For more information about the GUI, see Chapter 3, “Using the Expedite for
Windows graphical user interface.’’

Writing your own interface
You can write your own interface to Expedite for Windows if you want to:

■ Integrate the functions of Information Exchange into your application and
present your own interface to your customers

■ Enable only a small number of functions, such as sending and receiving files, for
your customers

■ Have your application control the session with Information Exchange

■ Write an e-mail application
11

Software Development Kit Programming Guide
Distributing your project to users
Expedite for Windows is designed to assist you in distributing your project to users.
You can do all, some, or none of the configuration in your application, using the GUI
to reduce the amount of code you must include in your application.

Creating and exporting your project
To create an application and distribute it to your users, do the following:

1. Install Expedite for Windows on your system.

2. Compile and test the sample applications as described in “Building the sample
program” on page 14.

3. Build your application using the C-language interface DLL.

4. Export (distribute) your project configuration to a file using the Expedite for
Windows GUI. From the main menu, select “File,” then select “Distribute
project.”

Installing the project
Once you have exported your project, your users can then install the project by doing
the following:

1. Install Expedite for Windows and your application on their systems.

2. Install your project using the Expedite for Windows Toolbox.

Configuring the project
Your project can be configured either by your application, or by your users through
the Expedite for Windows GUI as follows:

1. If dial connectivity will be used, configure the AT&T Global Network Dialer.

2. Configure the Expedite for Windows communications profile.

3. Add the mailbox ID information (Information Exchange account ID, user ID, and
password) for Expedite.

4. Assign the new mailbox ID to any dropoff boxes defined in the project.
12

Chapter 2. Getting Started
Programming experience requirement
C programming experience is required to fully utilize the information provided in this
book. To write an interface to Expedite for Windows using the C-language interface,
you should be familiar with using DLLs with Windows. Some of the Expedite for
Windows calls are straight-forward; however, other calls, such as listing multiple
types of records from the database, require an understanding of arrays of structures,
pointers, and pointers-to-pointers in the C programming language.

Before using the expc32.dll file, you need a basic knowledge of DLLs and how they
work. Samples provided with the product are a good starting point to show how to
compile and link with a DLL. These are located in the SDK\SAMPLE\CLANG
directory under the install directory.

You should also be familiar with Java if you want to use the Java interface. For more
information, see Chapter 5, “Programming to the Java interface.’’

Understanding the C-language interface files
The C-language interface includes the files you need to compile your application in
the SDK\INCLUDE and SDK\BIN directories under the Expedite for Windows
install directory. These are:

■ The header file SDK\INCLUDE\expc32.h
■ The link library SDK\BIN\expc32m.lib
■ The dynamic link library SDK\BIN\expc32.dll

expc32.h header file
The expc32.h header file includes other header files as a convenience for your appli-
cation. These files and their contents are as follows:

Header file Contents

exp32def.h Definitions

exp32err.h Constant definitions for errors

exp32fnc.h Function prototypes

exp32len.h Constant definitions for field lengths

exp32str.h Structure definitions

exp32val.h Constant definitions
13

Software Development Kit Programming Guide
expc32m.lib link library
The expc32m.lib link library is the link library specifically for expc32.dll, which you
link to your application to access the Expedite C-language API function calls. To use
expc32m.lib, move it to the path specified in your LIBPATH environment variable.

Building the sample program
The sample code in the Expedite for Windows SDK includes samples for C in the
SDK\CLANG subdirectory, for Microsoft Visual C in the SDK\visualc subdirectory,
and for Microsoft Visual Basic in the SDK\visualbasic subdirectory. Each subdi-
rectory contains a readme.txt file with an explanation of the files included and how to
use them. This section gives an overview of using the sample code in the
SDK\CLANG directory.

To execute the sample program successfully:

1. Set up the environment according to the hardware and software requirements.

2. Install the Microsoft Visual C++ compiler, if it is not installed already.

3. Copy expc32.dll to your LIBPATH directory.

4. Edit the sample makefile to specify the directories for the compiler and include
files.

5. Compile the sample program using the sample makefiles.

6. Run the sample program.

7. After the sample program finishes, start the Expedite for Windows GUI to review
the results of the execution of the sample program.
14

Chapter 2. Getting Started
Deleting the sample project and address
If you want to delete the project and address created by the sample program, you can
use the GUI or create a C-language interface program to do these tasks.

To delete the project and address using the GUI:

1. Start Expedite for Windows using the icon or the Start/Programs menu.

If no other projects are installed, Expedite opens the project automatically for
you.

2. If the navigator bar icons remain disabled after the splash screen closes, do the
following:

a. Select File/Open from the menu bar on the main window.

b. Select Project1 from the list in the dialog box.

c. Click OK.

3. Select Delete from the File menu.

4. Click Yes to confirm the deletion.

The project and address from the sample program are deleted.

To delete the project and address created by the sample program using the C-language
interface, use the ExpOpenProj and ExpDeleteProj function calls in your appli-
cation code.
15

Software Development Kit Programming Guide
16

© Copyright GXS, Inc. 1998, 2005
Chapter 3
Using the Expedite for Windows

.
graphical user interface

Using the graphical user interface (GUI) to perform tasks has several advantages over
writing Expedite for Windows C-language interface code to perform the same tasks.
The following sections detail how you can use the capabilities of the GUI to your
advantage.

Using the GUI during setup
In most cases, rather than use the C-language interface, you can effectively use the
GUI. Using the GUI during setup, you can minimize the amount of code required to
use your application with Information Exchange.

You can use the GUI to:

■ Set up the project

In most cases, you set up a project once and distribute it with an application. (The
only reason to use the project-related functions of the C-language interface for
setup is if you want your users to create new projects using your application.)

■ Set up address book records

You can set up addresses at a central location and distribute the address book to
your users. Or, you can let your users set up addresses, distribution lists, and
trading profiles by using the GUI themselves. (There is no need to write a C-
language interface to manipulate address book records.)
17

Software Development Kit Programming Guide
■ Set up dropoff boxes

You can set up dropoff boxes specifically for your application’s needs. A dropoff
box represents an Information Exchange session. You usually need to define in
your application only a few dropoff boxes using the GUI. If your users need to
change dropoff box settings to handle special problems, you can give them
access to the dropoff box definitions through the GUI. (You do not need to write
an interface to the dropoff boxes with the C-language interface.)

■ Set up orders

If your application performs the same data transfer activities each time it runs,
use the GUI to set up orders. (If your application performs different activities
each time, you can use the C-language interface to define orders as needed by the
application.)

Once orders are created, they are stored automatically on the order shelf for
repeated use. If you do not want to store orders for your application, delete them
from the order shelf after they process successfully.

■ Maintain the receipt database

Receipts for order processing are associated with the session receipt they are
generated under and are stored on the receipt shelf. You can set up automated
receipt maintenance in your project.

If you set “Retain receipts” (the RcpRetain field in the ExpAddProjReqStruct
structure) to a value other than 999 days, Expedite for Windows automatically
deletes receipts older than the number of days you specify.

You can let your users access and maintain receipts through the GUI, or, if you
prefer, you can write your own receipt shelf maintenance code through the C-
language interface.

The following sections provide general information on using the GUI for some basic
tasks. For more detailed information, see the Expedite for Windows User’s Guide.

NOTE: While the GUI provides an easy way to complete many setup
tasks, the session setup tasks apply only to unattended or batch sessions. If
your application needs to take action based on the result of each session
command, use the C-language interface interactive session functions. For
more information, see “Setting up unattended sessions” on page 21.
18

Chapter 3. Using the Expedite for Windows graphical user interface
Setting up a project
If you provide the project creator name and additional information about your appli-
cation and company in the description section of your project, it helps the GXS
Community Support if problems arise. Customer Care can help resolve some
problems and review session results, but you should let your users know how to reach
your support and development staff to resolve problems for which Customer Care
cannot provide help.

You should password protect your projects to prevent your users from changing previ-
ously created dropoff boxes, orders, trading profiles, or addresses. If you specify a
read password, you must specify a write password. A read password allows your
users to view information, create Information Exchange mailbox IDs, process dropoff
boxes, or recover sessions. A write password allows your users to change information
in any station.

Using the address book
The Expedite for Windows GUI requires that you set up an address book with Infor-
mation Exchange addresses to create an order and process a dropoff box.

Expedite for Windows makes this process easy and convenient by using nicknames
for the Information Exchange addresses. Each nickname must have at least one Infor-
mation Exchange address format associated with it; that is, account and user ID, or
alias type and alias. You can use the GUI to create a nickname for each Information
Exchange address when you set up your address book. Then, use the nickname
instead of the Information Exchange address when you create a new order. Or, you
can let your users set up their nicknames and addresses using the GUI.

Instead of using the GUI to set up addresses, you can use the C-language interface to
access addresses stored in a different format in another application. Also, because the
C-language interface provides a complete set of functions to maintain the Expedite
for Windows address book, you can write a more customized interface to the address
book. For more detailed information on the C-language interface address book
functions, see the Software Development Kit Programming Reference.
19

Software Development Kit Programming Guide
Using distribution lists in the address book
With Expedite for Windows, you can store distribution lists in the address book.
These distribution lists are interpreted as temporary lists when Expedite for Windows
defines them to Information Exchange. Because these distribution lists are used only
for the duration of the session in which they were defined, your users can maintain
their own. You can write an interface to distribution lists using the C-language
interface, or you can have your users manage them using the GUI.

Working without an address book
The GUI requires users to set up address book entries with nicknames corresponding
to the Information Exchange addresses (accounts and user IDs). The nicknames, not
the accounts and user IDs, are used when communicating with Information Exchange.
C-language interface users can communicate with Information Exchange using only
the accounts and user IDs by creating orders with the ExpAddSendOrdr function
call, and processing orders with the ExpDoSendOrdr function call.

If you store orders without nicknames, view them in the GUI, and then try to save the
orders, the GUI asks you to specify a nickname and adds default values to other
fields. To avoid changing orders added by the C-Language interface application, just
select Cancel.

Using trading profiles
Trading profiles are a convenient way to define a set of attributes for an individual
trading partner or group of trading partners, because you do not need to repeat the
trading profile information on the orders.

While most of the information in a trading profile is used to send data to a trading
partner, some information is required to receive data from a trading partner.

If a trading profile is set up for the address specified and no values are specified on
the order, Expedite for Windows uses defaults as values for sending and receiving
data. Trading profiles are a convenience and not required by either the GUI or the
C-language interface. For definitions of the default values, see the Software Devel-
opment Kit Programming Reference.

You can write an interface to trading profiles using the C-language interface or have
your users manage the profiles through the GUI.
20

Chapter 3. Using the Expedite for Windows graphical user interface
Setting up unattended sessions
If you want your application to process orders or groups of orders in unattended
(batch) sessions, do one of the following:

■ Use the GUI to set up the dropoff boxes and orders. Then, use the application to
call the ProcDropBox function with the name of the dropoff box to be processed.

OR

■ Use the C-language interface to create the dropoff boxes and orders. Then, run
them in unattended mode.

For more information, see “Preparing to send and receive files” on page 57.

For easy error recovery for unattended sessions, use the automated recovery options
of Expedite for Windows. When the session ends, Expedite for Windows examines
the return code in the session receipt and automatically recovers the session according
to the option you selected.
21

Software Development Kit Programming Guide
22

© Copyright GXS, Inc. 1998, 2005
Chapter 4
.
Programming to the C-language interface

This chapter explains how to program the Expedite for Windows C-language
interface. It describes the function call input and output structures, and explains how
to use the C-language interface to manage interactive or batch Information Exchange
sessions. For a detailed description of each function call, see the Software Devel-
opment Kit Programming Reference.

Input structures
The input structure fields have enough space to specify the maximum number of
characters allowed by Request Manager. When using the structures to specify data for
Request Manager, initialize the structure to blanks before adding data to it. Do not use
nulls (binary zeros) in the structures, unless you want to use a Replace function to
delete the value currently stored in a field in the database. Always left-justify the
values and pad on the right with blanks.

Initializing the structure
Expedite for Windows provides a function named ExpResetMem to initialize the
structure. Use the function ExpAddField to copy information to a data structure. The
data should be passed in a null-terminated string, and the source string cannot exceed
the maximum length for the target structure field.
23

Software Development Kit Programming Guide
The following example shows how to add (initialize) a project name to the ExpAd-
dProjReqStruct.

ExpAddProjReqStruct Project;
ExpResetMem((char *)Project,
 sizeof(struct ExpAddProjReqStruct));
ExpAddField(Project.ProjName, “Purchasing”);

Replacing values in the structures
Expedite for Windows also provides a function to replace values in the structures. For
ExpReplaceField, pass in the length of the field so it can be padded with blanks. The
following example shows how to replace the project name specified in the previous
example:

ExpReplaceField(Project.Creator,
 EXP_MAXLEN_PJ_CREATOR, “John Smith”);

To delete a field stored in the database, set the field in the structure to nulls (binary
zeros or ‘\0’) instead of blanks.

Input structure naming conventions
In the C-language interface, function calls require an input structure to specify infor-
mation about a request and a pointer to a data area to store the response information.
The structure names are easy to remember because they reflect the name of the
function they are used with, based on the following naming conventions:

■ The function names and structures all begin with Exp to indicate that the
function or structure is specific to Expedite for Windows.

■ The Exp is followed by the verb or action of the request, such as Add, Delete,
Replace, List, Open, Close, Asg (assign), and Usg (unassign).

■ Finally, the verb is followed by the object of the request, such as: DistList (distri-
bution list), Addr (address), SendOrdr (send order) or Proj (project).

For a detailed list of all the structures used to input C-language interface function
calls, see the Software Development Kit Programming Reference.
24

Chapter 4. Programming to the C-language interface
Case sensitivity in input fields
For certain fields, especially one-character option fields, the values are case sensitive.
For example, you must specify yes or no for some fields using Y or N. If you use a
lowercase y or n, Expedite for Windows does not recognize the fields as valid.

Generally, names of records are not case sensitive. For example, nicknames on
address records, dropoff box names, or order names are not case sensitive. Also, file
IDs are not case sensitive in Windows or in Expedite for Windows.

If you search on a non-case-sensitive field, Expedite for Windows finds matches,
regardless of case. For example, if you search for the nickname George, the following
variations will match: GEORGE, george, and GEorge.

Refer to the Software Development Kit Programming Reference to confirm which
fields are case sensitive.

Output structures
The following commands have a single output structure to hold the response infor-
mation:

If you pass NULL (char *0) in place of a pointer to a response structure, you get only
the return code and possible error information.

Add Adds a new, unique object to the database. The response reflects what
was stored in the database. Your application can use this information
to make screen updates or to verify what was added to the database.

Replace Replaces information specified about an existing database object. This
object must exist in the database. The response echoes what was
stored in the database. Your application can use this information to
make screen updates or to verify what was changed in the database.
The unique key value cannot be replaced. To remove the value of a
field, you must set its value to binary zeros (‘\0’). If you set the field to
blanks, Expedite will leave its value unchanged.

Do The ExpStartSess, ExpEndSess, and Do functions are for interactive
sessions. For session start, session end, and send and receive
functions, the output contains the receipt that is also stored in the
database.
25

Software Development Kit Programming Guide
 The following commands have no response output other than the return code:

The List command may have one or more structures in an array of response struc-
tures:

List functions
List functions have additional arguments besides the input and output structures. The
output structure is actually an array of output structures. The ExpDoQuery function
call also acts like a List function, since it lists the contents of the Information
Exchange mailbox. The call below shows the general format of a List call.

 ExpListObject(struct ExpListReqStruct *Input,
 unsigned short *EntriesReturned,
 struct ExpObjectListedRspStruct *Output);

The following sections provide details for specifying the maximum number of struc-
tures to return and for qualifying a list.

Open Opens the C-language interface or the database (mailbox, address book,
project).

Close Closes the C-language interface or database previously opened.

Delete Removes an object from the database.

Assign Attaches ownership of one object to another object.

Unassign Removes previously assigned ownership of one object from its owner
object.

List Contains information about an object or multiple objects. The List
command may have multiple response structures passed back in an array.
See the section on List functions below.
26

Chapter 4. Programming to the C-language interface
Returning entries
To allocate quantities of memory to best fit the requirements of your application, the
C-language interface function calls allow you to specify the maximum number of
record structures to return on the response.

To read all the entries in the database, your application must include a loop that calls
the list function, processes the results, initializes the response array, and then calls the
list function again with the next start index. To do this:

1. Allocate memory for the response array by multiplying the size of the response
structure by the number of entries you wish to retrieve with each list function
call. For more information, see “Allocating space” on page 31.

2. Specify StartIndex as 1 and NumEntries as the number of entries you wish to
retrieve with each list function call.

3. Look at the EntriesReturned argument to see how many data structures were
returned.

a. If the value of the EntriesReturned argument is equal to the number
specified in the NumEntries field of the list request structure, there may be
more records to retrieve.

b. If the value of the EntriesReturned argument is less than the number
specified in the NumEntries field of the list request structure, then there are
no more data structures to be retrieved until you make a new call.

4. To continue, modify the StartIndex field of your request structure to the next
index value from which to start your request.

5. Issue the same list function call again to retrieve more records that match the
original request.

6. Repeat the List call until the C-language interface sets the NumEntries
argument to a number less than NumEntries in the list request structure. This
process is known as paging through the database.
27

Software Development Kit Programming Guide
Qualifying a list
In your application, you may find it necessary to list objects in the database that
match certain specifications. In the C-language interface, this is called qualifying the
list. Most of the List functions support the qualifiers.
The following is an example of the format of the qualifier structure:

struct ExpListReqStruct
 {
 char ProjName[EXP_MAXLEN_PJ_PROJ_NAME];
 char SearchParm[EXP_MAXLEN_SEARCH_PARM];
 char SearchOp[EXP_MAXLEN_SEARCH_OPER];
 char SearchValue[EXP_MAXLEN_SEARCH_VALUE];
 char SortParm[EXP_MAXLEN_SORT_PARM];
 char SortOrder[EXP_MAXLEN_SORT_ORDER];
 char NumEntries[EXP_MAXLEN_NUM_ENTRIES];
 char StartIndex[EXP_MAXLEN_START_INDEX];
 };

The structure qualifiers are defined as follows:

ProjName Specifies the name of the project that this request is issued against.

SearchParm Used with SearchValue and SearchOp, allows you to search for
objects in the database that match the search criteria. SearchParm
is a character field identifying the field on which to search.

SearchOp Used with SearchValue and SearchParm, allows you to search
for objects in the database that match the search criteria.
SearchOp allows you to search for items using these parameters:

 = equal to

 <> not equal to

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

SearchValue Used with SearchParm and SearchOp, allows you to search for
objects in the database that match the search criteria. SearchValue
is the character string to be matched with the ParmID.
28

Chapter 4. Programming to the C-language interface
Response structure arrays with multiple kinds of objects
The array of response structures may contain structures of different types. In your
application, allocate space for the responses by using the following formula, where
ObjectStructure is the largest structure that could possibly be returned.

len = (sizeof(ExpObjectListedRspStruct)) * NumEntries;

ExpObjectListedRspStruct is the name of the structure used in the response for the
function.

When the response structure array is returned, look at the Type field (usually the first
field in the structure) to see how to cast the rest of the response information.

For example, if OrdrType is EXP_SEND_ORDR, cast using ExpSendOrderRsp-
Struct to access the elements of the returned structure.

SortParm Specifies a field in the database on which to sort the List command
responses.

SortOrder Specifies a sort order, ascending or descending, for responses to
the List command.

A Ascending

D Descending

NumEntries Specifies the total number of entries to retrieve from the database
for a List command. When used with StartIndex, you can page
through the database entries. This value is required.

StartIndex Specifies where in the database (on which record number) to start
the list. When used with NumEntries, you can page through the
database entries.
29

Software Development Kit Programming Guide
Following is an example of how to process response structures when there are
multiple types of structures in the response, as in ExpListOrdrShlf:

ExpListReqStruct Input;
ExpListRpsStruct *Output;
ExpSendOrderListedRspStruct *SNptr;
ExpRecvOrderListedRspStruct *RVptr;

/* load input */
...
/* allocate space for output */
...
/* make the call */
rc = ExpListOrdrShlf(&Input, &EntriesReturned, Output);
if (rc)
 /* process error */
else
 {
 /* process the response */
 for (i = 0; i < MaxEntries; i++)
 {
 switch(Output[index]->OrdrType)
 {
 case EXP_SEND_ORDR:
 SNptr = (ExpSendOrderListedStruct *)
 Output[index];
 /* process data for send order */
 break;
 case EXP_RECV_ORDR:
 RVptr = (ExpRecvOrderListedStruct *)
 Output[index];
 /* process data for send order */
 break;
 }
 }
 }
30

Chapter 4. Programming to the C-language interface
Allocating space
When allocating space, you need to allocate enough for the number of entries
requested; that is, specify that number in the NumEntries field in the request structure
of the List function. NumEntries is a required field that indicates how many struc-
tures of data should be retrieved by Request Manager for this command.

For example, to get entries 1 through 100 from the database, but only allocate space
for 20 at a time:

1. Specify NumEntries as 20.

2. Specify StartIndex as 1.

3. After you issue the call once, process the 20 records returned.

4. Repeat the same call with StartIndex specified as 21.

5. Continue this process with successive request calls, incrementing the StartIndex
value each time until you obtain all results, or until Expedite sets the
EntriesReturned argument to 0.

Evaluating the results of a function call
Each function returns an integer value that acts as a return code to let you know
whether the request completed successfully. The return codes are:

0 No error exists. The request processed successfully.

4 Information-level error. The request processed, but some unusual
condition occurred that may have caused incomplete processing. For
example, if you tried to delete a record that was not in the database, the
return is 4.

8 Error. The request was not processed because an error occurred. For
example, if you tried to assign an address to a distribution list that does
not exist, the return code is 8.

12 Interface terminated. The C-language component ended abnormally
because of an error. For example, if Expedite/Base for Windows tried to
write to a database file that was corrupted, the return code is 12.
31

Software Development Kit Programming Guide
Managing Information Exchange sessions
With the C-language interface, you can manage Information Exchange sessions as
either interactive sessions or unattended sessions.

■ Use an interactive session if your application does not use dropoff boxes and
does need to maintain control between Information Exchange commands.

■ Use an unattended (batch) session if a dropoff box is already set up and your
application does not need to maintain control between Information Exchange
commands.

Interactive sessions
An interactive session indicates that your application maintains control between
Expedite for Windows C-language interface function calls. To execute an interactive
session, use these functions in your application:

■ ExpOpenMsgSys

■ ExpStartSess

■ ExpDoSendOrdr

■ ExpDoRecvOrdr

■ ExpDoQuryOrdr

■ ExpDoPurgOrdr

■ ExpEndSess

■ ExpCloseMsgSys

On the response to the ExpStartSess function call, Expedite for Windows indicates
the name of the session receipt for this session. Both the send and receive functions
may result in multiple files being transferred. Each ExpDoSendOrdr and
ExpDoRecvOrdr provides a summary of the file transfer activity in the response.

To obtain the detailed information, use the session receipt name in the
ExpListSessRcpt function. For order receipts, use ExpListRcptsOnSessRcpt, speci-
fying the session receipt name. You can also use the GUI to view the results of the
session.
32

Chapter 4. Programming to the C-language interface
ExpDoQuryOrdr and ExpDoPurgOrdr do not store receipts in the database. The
ExpDoQuryOrdr lists the contents of the Information Exchange mailbox, and as
such, acts like a List function. ExpDoPurgOrdr returns only the return code for the
processing.

If an error occurs during an interactive session that does not cause the line to be
disconnected, your application can either continue or call the ExpEndSess function.
If the line was disconnected, your application must call the ExpStartSess function
again before issuing any data transfer commands.

Whether or not an error occurred, if your application does not end the session and
closes the project or otherwise exits, Request Manager tries to send the session end
command to Information Exchange. It also sets the session end return code to 0,
marks the session as completed, and erases all control files associated with the
session. The user ID from the ExpStartSess function is enabled. The next time your
application starts a session, it is a brand new session or a “reset” session.

Interactive session recovery
Only file-level recovery is allowed for interactive sessions. Because each file transfer
is either successful or not, and your application is in control, the actions of your appli-
cation determine the recovery. Expedite for Windows’ automated recovery is not
applicable to interactive sessions.

Unattended sessions
An unattended (batch) session indicates that your application does not maintain
control between Expedite for Windows C-language interface function calls.

To execute an unattended session, use either the GUI or the C-language interface.

■ If the following tasks are always to be done the same way, use the GUI once to:

a. Set up a dropoff box and orders.

a. Assign the orders to the dropoff box.
33

Software Development Kit Programming Guide
■ If different orders are needed for a particular session, you can use the C-language
interface to:

a. Set up the dropoff boxes and orders as required using these functions:

- ExpOpenMbox

- ExpAddDropBox

- ExpAddSendOrder

- ExpAddRecvOrdr

- ExpAsgSendOrdrToDropBox

- ExpAsgRecvOrdrToDropBox

- ExpCloseMbox

b. Use the ExpProcDropBox function to start the session:

- ExpOpenMsgSys

- ExpProcDropBox

- ExpCloseMsgSys

Control returns to your application when the session is completed. The response
structure you passed in the ExpProcDropBox function contains the session receipt
information, including a return code of 0, 4, 8, 12, or 13 to indicate the highest
severity of any errors that may have occurred during the session.

Unattended session recovery
If your unattended (batch) session ends in error, the session is left in restart recovery
state if the following occurred:

■ You specified session recovery as checkpoint-level or file-level (C or F).

■ You specified dropoff box recovery as “Leave as-is” (L).

■ Expedite took a checkpoint with Information Exchange during the session.

The mailbox ID (account ID and user ID) associated with the session is disabled; that
is, it cannot be used for any other sessions or dropoff boxes until this session is
recovered.
34

Chapter 4. Programming to the C-language interface
Always fix the restart problem from Expedite, and avoid resetting the session using
Information Exchange Administration Services. This is because Expedite needs to
coordinate the session reset with Information Exchange. If you recover the session
using Expedite, Expedite resets its control files. Then, the next time it starts a session
with Information Exchange, it resets the Information Exchange side of the session as
well. If you reset the session using only Information Exchange Administration
Services, and you try to use Expedite to start a session, the session ends in reset
recovery state with a “commit level mismatch” error. You then need to reset or cancel
the session using Expedite.

You can recover a session manually by using the ExpRecoverSessRcpt function (see
“Manual session recovery” on page 36), or you can direct Expedite for Windows to
automatically recover by specifying the ExpProcDropBox function (see “Automated
session recovery” on page 38).

Restart state: A restart state exists if a session connection breaks, but the session can
be completed if reconnected. Common causes of this error are:

■ A network component becomes unavailable.

■ The modem disconnects during a session.

■ An unexpected response is received from Information Exchange.

Reset state: A reset state exists when an unrecoverable error occurs. A common
cause of this error is when the same account ID and user ID are used for two simulta-
neous sessions, either of which was using one of the checkpoint-level session
recovery options.

In either restart or reset states, the Information Exchange account ID and user ID
associated with the dropoff box (or session) cannot be used until the problem is
resolved.

NOTE: Do not use automated recovery type R if you are receiving
multiple files with a single receive order, or if you are sending multiple EDI
envelopes from a single file. This is because Expedite will remove the
receipts for the data already sent and received for orders that are to be
marked as “Pending,” and your application will not be able to do recovery
for data already sent or received.
35

Software Development Kit Programming Guide
Manual session recovery
For manual recovery, set the DropRecovery option in the ExpAddDropBoxReq-
Struct to blank or set to L for leave as-is. If session processing ends unsuccessfully,
consider one of the following options in the design of the application:

Restart state: Design the application to restart upon an unsuccessful session end in
one of the following ways:

■ Restart immediately by using ExpRecoverSessRcpt with the Session Receipt
name and the Recover fields set to F (finish processing immediately).

■ Leave the session as-is to be completed in the future using the same ExpRecov-
erSessRcpt function as above. The mailbox ID associated with the session may
be disabled.

■ Reset the session by using ExpRecoverSessRcpt with the Session Receipt and
Recover fields set to R (reset session). All orders not committed are marked as
Pending. To complete the processing, use ExpRecoverSessRcpt and set the
Session Receipt and Recover fields to F (finish processing immediately).

■ Cancel the session by using ExpRecoverSessRcpt with the Session Receipt and
Recover fields set to C (cancel session). Expedite sets the OrdrStatus on all
orders not committed as N (canceled). The session, account ID, and user ID are
considered recovered. However, the unprocessed orders cannot be completed at a
future time.

NOTE: Before you reset the session with the ExpRecoverSessRcpt
function, you need to perform the following data recovery steps:

1. Check the receive order receipt to see which ones were marked
“Committed.”

2. Process the data received so it is not overwritten when the session is
resumed.

3. Check the send order receipts for orders in which you are sending
multiple EDI envelopes from a single file.

4. Remove each envelope that was already committed from the file before
resuming the session.

For more information, see “Resetting sessions after recovery” on page 72.
36

Chapter 4. Programming to the C-language interface
Reset state: Design the application to reset upon an unsuccessful session end.

Resetting a session marks all uncompleted orders as pending, even if they were
partially committed. Information Exchange only delivers sent and received files that
were committed in their entirety when the session was reset.

Information Exchange discards any partially committed files. Resetting a session
allows Expedite for Windows and Information Exchange to resume at the last agreed-
upon checkpoint.

The application can leave the session as-is to be completed in the future using one of
the options described below.

■ Reset the session by using ExpRecoverSessRcpt with the Session Receipt name
and the Recover field set to R (reset session). All orders not committed will be
marked as pending. To complete the processing, use ExpRecoverSessRcpt and
set the Session Receipt and Recover fields to F (finish processing immediately).

■ Cancel the session by using ExpRecoverSessRcpt with the Session Receipt and
Recover fields set to C (cancel session). The session, account ID, and user ID are
considered recovered. However, the unprocessed orders cannot be completed at a
future time.

NOTE: Before you reset the session with the ExpRecoverSessRcpt
function, you need to perform the following data recovery steps:

1. Check the receive order receipt to see which ones were marked
“Committed.”

2. Process the data received so it is not overwritten when the session is
resumed.

3. Check the send order receipts for orders in which you are sending
multiple EDI envelopes from a single file.

4. Remove each envelope that was already committed from the file before
resuming the session.

For more information, see “Resetting sessions after recovery” on page 72.
37

Software Development Kit Programming Guide
Automated session recovery
Expedite for Windows allows your application to specify postprocessing parameters
in advance, should Expedite for Windows be unable to complete a session with Infor-
mation Exchange.

For such automated postprocessing for an unsuccessful session, set the DropRecovery
option in the ExpAddDropBoxReqStruct or ExpStartSessReqStruct to:

Displaying session status
When processing a dropoff box or an interactive session, Expedite will display a
session status window showing:

■ The current command processing

■ The result of the processing

■ The number of files sent and received

■ The number of bytes sent or received for the current file

■ The progress indicator for files sent or received

You can turn off the display by specifying N in the AppStat field of the ExpAdd-
DropBoxReqStruct or ExpStartSessReqStruct structures.

 R Reset the session. Expedite for Windows marks the unprocessed
orders as Pending for future processing.

 C Cancel the session. Expedite for Windows marks unprocessed orders
as Canceled.

NOTE: Do not use automated recovery type R if you are receiving
multiple files with a single receive order, or if you are sending multiple EDI
envelopes from a single file. This is because Expedite will remove the
receipts for the data already sent and received for orders that are to be
marked as “Pending,” and your application will not be able to do recovery
for data already sent or received.
38

© Copyright GXS, Inc. 1998, 2005
Chapter 5
.
Programming to the Java interface

This chapter explains how to write programs using the Expedite for Windows Java
interface, and it describes the Java database classes that you use with your applica-
tions.

It is recommended that you have an understanding of the C-language interface used
with Expedite for Windows. Review other chapters in this book for information on
programming with the C-language interface. For a detailed description of the C-
language function calls and their input and output structures, see the Software Devel-
opment Kit Programming Reference.

The three samples included with the product are examples of how to use the Java
classes provided with Expedite for Windows 6.2. The samples offer a graphical user
interface example and two console examples, as further described in this chapter.

Overview of the Java interface
The Expedite for Windows Java interface enables Java programmers to write Java
programs to control Expedite for Windows through the existing C-language interface.
The Java programs can be written and compiled with the Sun Microsystems, Inc.,
Java Development Kit (JDK) or with a visual tool such as VisualAge for Java. This
chapter includes sample programs written with both JDK and VisualAge.

The Expedite for Windows Java interface contains both a C dynamic link library
(DLL) and Java classes.

■ The C DLL contains the native Java functions that are called through the Java
Native Interface (JNI). The Java interface provides the same level of function-
ality as the C-language interface.
39

Software Development Kit Programming Guide
■ The Java code contains Java classes that represent the data and functions in the
Expedite for Windows C-language interface. Each Java class contains data
members that correspond to a record in the Expedite for Windows database. Each
class also contains methods that call the actual C-language interface functions.

Comparing the C-language interface and the Java interface
To use the C-language interface, you must create the required input and output struc-
tures and call the C-API functions by passing the structures as parameters to the
function. When the function is complete, the output structure contains data about the
function that was called.

The Java interface hides the direct use of the C-API functions by allowing you to
instantiate an object and call its methods. The methods actually call the C-API
functions. Any data returned in the output structures is used to set the object’s data
members.

Using Java native methods
You do not need to call the Java native methods in your Java programs except to open
and close the C-language interface; that is, your Java programs must contain the
following calls: ExpJni.jniOpenCInterface and ExpJni.jniCloseCInterface. Other
than this exception, you can write your programs using only the database classes
provided.

In addition, you must also use the loadLibrary method of the System class to enable
your Java application to use the Java interface DLL. See “Example of Java interface
code” on page 41 to see this used in coding:

System.loadLibrary(“expjni”);
40

Chapter 5. Programming to the Java interface
Example of Java interface code
The following is a simple console application that adds a new address to the Expedite
for Windows database.

import ExpStructs.*;
import ExpDB.*;

public class SampleApp
{
 public static void main(String args[])
 {
 int rc;

 // Load the JNI DLL.
 System.loadLibrary("expjni");

 try
 {
 // Open the C-Language interface.
 rc = ExpJni.jniOpenCInterface();
 System.out.println("Interface opened. RC = " + rc);

 // Open the project.
 rc = ExpProject.open("SampleProject", " ");
 System.out.println("Project opened. RC = " + rc);

 // Create an ExpAddress object and set its data members.
 ExpAddress newAddress = new ExpAddress();
 newAddress.setNickname("joe");
 newAddress.setIeMboxId("account joe");
 newAddress.setFirstname("Joe");
 newAddress.setLastname("Smith");

 // Add the new address to the Expedite database.
 rc = newAddress.add();
 System.out.println("Add address. RC = " + rc);

 // Close the project.
 rc = ExpProject.close();
 System.out.println("Project closed. RC = " + rc);
 }

 catch (ExpException e)
 {
 reportException(e);
 }
41

Software Development Kit Programming Guide
 try
 {
 rc = ExpJni.jniCloseCInterface();
 System.out.println("Interface closed. RC = " + rc);
 }

 catch (ExpException e)
 {
 reportException(e);
 }
 }

 public static void reportException(ExpException theException)
 {
 System.out.println("Message from exception " +
 theException.getMessage());
 System.out.println("ReasonCode: " + theException.getReasonCode());
 System.out.println("ErrorMsg: " + theException.getErrorMsg());
 System.out.println("ErrorTxt: " + theException.getErrorTxt());
 System.out.println("Response: " + theException.getResponse());
 }
}

In the above example, the ExpAddress object (a database class) is created by calling
new ExpAddress(). Its data members are set by using the “set” methods in the next
four lines. Each database class contains get and set methods for all data members. The
line that actually calls the C-language interface function to add the address to the
database is newAddress.add(). When you call methods on any of the database
objects, the C-language interface functions are called in the underlying code.

After the C-language interface function is called, the data members of ExpAddress
are set with the data returned from the function call. This is not significant for the
ExpAddress object, because the data returned from the function call is exactly the
same as the data before the call was made. However, this is significant with other
functions; for example, when the ExpDropBox.process() method is called, several
data members, such as the receipt name and the session key, provide valuable infor-
mation about the session. Refer to the response structures in the Software Devel-
opment Kit Programming Reference to determine the data that is returned.
42

Chapter 5. Programming to the Java interface
Handling errors
Use the ExpException class to handle errors in the C-language interface. All Java
interface calls must be called within a try/catch block. When an ExpException is
caught, the message of the exception is set to the return code from the C-language
interface function call. The reason code, error message, error text, and user response
messages can be obtained by calling the “get” methods of the ExpException class.

In the program sample on the previous pages, several Java interface calls are included
in the first try block. An error in any of those calls will cause the program to jump into
the catch block and run the exception code. The exception code simply calls
reportException, which prints the exception onto the screen. Note that the call to
ExpJni.jniCloseCInterface is in its own try/catch block, enabling the call that closes
the interface to execute even if an exception occurred earlier in the program.

Compiling and running the sample Java programs
Three sample Java programs are included with Expedite for Windows. Two programs
are simple console applications, and one program is a GUI application that was
created with VisualAge® for Java. All sample programs can be compiled and run
with either the JDK or VisualAge.

■ The two console applications are located in the \Expedite\sdk\Java directory.
The file names are SendFile.java and ReceiveFile.java.

■ The GUI application is distributed as both a jar file and a VisualAge repository
file.

If you are using the JDK only, follow the directions in “Compiling and running
sample programs with the JDK” on page 44. If you are using VisualAge for Java,
follow the directions in the “Compiling and running sample programs with
VisualAge” on page 45.

NOTE: The sample in “Example of Java interface code” on page 41
includes several calls in one try block to simplify the sample program, but
this may not be the way you want to structure your program.
43

Software Development Kit Programming Guide
Compiling and running sample programs with the JDK
Before running the samples with the JDK, copy the two DLLs in the
\Expedite\sdk\bin directory into the current directory.

To compile the two console sample applications, do the following:

1. Bring up a DOS window and change the directory to:

Expedite\sdk\java

2. Set the classpath to include the ExpJniClasses.jar file as follows:

set CLASSPATH=%CLASSPATH%;ExpJniClasses.jar;.

3. To compile the sample programs with the Java compiler, type one of the
following commands (depending on if you are sending or receiving) and press
Enter:

a. javac SendFile.java

b. javac ReceiveFile.java

4. To run the sample programs, type one of the following commands and press
Enter:

a. java SendFile

b. java ReceiveFile

The sample GUI application is distributed as a jar file that contains both Java source
files and class files. It is not necessary to recompile the application before running it.
However, you can compile the application using the following steps:

1. Bring up a DOS window and change the directory to:

c:\Expedite\sdk\java

2. Set the classpath to include the ExpJniClasses.jar file and the vasample.jar file:

set CLASSPATH=%CLASSPATH%;ExpJniClasses.jar;vasample.jar;.

3. To compile the sample program, type the following command and press Enter:

javac com/ibm/expedite/jnisample/*.java

4. To run the sample program, type the following command and press Enter:
44

Chapter 5. Programming to the Java interface
java com/ibm/expedite/jnisample/Driver

If you want to extract the source files from the jar file, type the following command:

jar -xvf ExpJniClasses.jar

Compiling and running sample programs with VisualAge
Before running the samples with VisualAge, you should either copy the two DLLs in
the \Expedite\sdk\bin directory to the \windows directory, or add the
\Expedite\sdk\bin directory to the path statement.

Before using the Expedite Java interface with VisualAge, you must import the
\Expedite\sdk\java\ExpJniClasses.jar file. To do this:

1. Create a project in VisualAge called “Expedite Java Interface.”

2. Import the \Expedite\sdk\java\ExpJniClasses.jar file by using the File/Import
utility.

To import the two console sample applications, import the SendFile.java and
ReceiveFile.java files using the File/Import utility. VisualAge compiles the programs
during the import.

To run the programs, select the program and click on the run icon.

To import the GUI application, use the File/Import utility to import the VisualAge
repository file \Expedite\sdk\java\vasample.dat.

To run the application, select the Driver class and click the run icon.

Using the sample GUI program
The following sample, created using VisualAge®, goes through an entire cycle of
sending and receiving a file. Although this sample can be considered a functioning
application, there are certain assumptions and limitations that you should consider.

Assumptions are:

■ An Information Exchange mailbox with a logon already exists for the user.

■ A communications profile has already been created.

■ Projects have already been added to the database.

■ The sample uses only quick send and receive rather than drop-off boxes.
45

Software Development Kit Programming Guide
Limitations are:

■ The sample opens only existing Information Exchange user ID logon

■ The sample opens only existing projects

Launching the program
When you launch the program, the Open Project window displays. (Refer to previous
sections for information on launching either the JDK or VisualAge programs.)

1. Enter an existing Information Exchange account ID and user ID.

2. Select the project you want to open from the drop-down list.

3. Enter the password if one exists for that project.

4. Click OK to continue with the Java sample. (Cancel ends the application.)
46

Chapter 5. Programming to the Java interface
The main Java Sample window displays.

5. Click on one of the following selections:

a. Address

b. Send File

c. Receive File

d. Close (closes the application)
47

Software Development Kit Programming Guide
Using the Address option
If you chose the Address option, the Address window displays. This window shows
the current addresses in your address book in a drop-down list.

To select an address:

1. Choose an address from the drop-down list.

Or, enter information in the other fields to add a new address.

2. Click either Add or Delete to add or delete the address you selected.

Or, click Close to return to the previous window.
48

Chapter 5. Programming to the Java interface
Using the Send File option
If you chose the Send File option, the Send File window displays. This window
enables you to browse your drive to select the file you wish to send.

To send files:

1. In the Class entry field, enter a group name to group files together.

2. From the File type drop-down list, select either Binary or Text.

3. From the Send to drop-down list, select an address to send the file to.

(The From field indicates the logon ID you are using to log on to Information
Exchange.)

4. In the Destination Directory/Filename field, either specify a directory path or
browse your drive to enter this value.

5. Click Send to send the file or files.

Or, click Close to return to the previous window.
49

Software Development Kit Programming Guide
Using the Receive File option
If you chose the Receive File option, the Receive File window displays. This window
enables you to select where and how you want to receive files.

To receive files:

1. In the Class entry field, enter a group name to receive files only from that group.

2. Highlight one of the two buttons:

a. Use Original Filename if you want to receive the file with its original file
name.

b. Overwrite Filename with... if you want to overwrite the original file name
with a file name of your choice. Then, specify the name and extension of the
file in the entry field to the right of this button.

3. From the Save as drop-down list, select whether you want to receive the files as a
single file or as multiple files.

When you save the files as multiple files, the file name you enter will have subse-
quent extensions of .002, and so on, for each separate file received.
50

Chapter 5. Programming to the Java interface
4. If a file already exists in the directory you have chosen, select one of the
following ways to receive the file:

• Append appends the file to the existing file.

• New File creates a new file with the .002 extension naming convention.

• Overwrite writes over the existing file and replaces it with the new file.

5. Click Receive to receive the file or files.

Or, click Close to return to the previous window.
51

Software Development Kit Programming Guide
Using the Receipt window
When you click either Send (on the Send File window) or Receive (on the Receive
File window), the Receipt window displays showing the file transfer status. After the
session completes and the files are transferred, the Receipt window lists detailed
information about the file transfer.

Click OK to return to either the Send or Receive window.
52

Chapter 5. Programming to the Java interface
Using the sample console programs
This section describes two console samples that go through the cycle of sending a file
and receiving a file, respectively. Each console file is written using the JDK and can
be considered a functioning application except for certain assumptions and limita-
tions.

The assumptions are:

■ An Information Exchange mailbox with a logon already exists for the user.

■ A communications profile has already been created.

■ Projects have already been added to the database.

■ The sample uses only quick send and receive rather than drop boxes.

The limitations are:

■ The sample opens only existing Information Exchange user ID logons.

■ The sample opens only existing projects.

SendFile prompts
To open the sample console programs, click the Run icon if you are using the
VisualAge sample, or type java sendfile if you are using the JDK sample.

To send a file, answer the following questions as you are prompted to do so. (The
default answers are shown below each question.)

1. What project would you like to use?

Default = Pj1

2. What is the password for this project?
(Press Enter if project does not have a password.)

Default = <return>

3. What Information Exchange logon user ID would you like to use?
(Press Enter to accept the default of Ig6000000.)

NOTE: Before you can run the samples, you should ensure that you do
NOT have Expedite for Windows 6.2 running.
53

Software Development Kit Programming Guide
lg6000000

4. What directory and file name would you like to send?

c:\temp\afile.txt

5. Who would you like to send the file to?
(Enter the nickname.)

jsmith

After you answer all the questions, the SendFile program executes and the Expedite
Session Status window displays.

ReceiveFile prompts
To receive a file, answer the following questions as you are prompted to do so. (The
default answers are shown below each question.)

1. What project would you like to use?

Default = Pj1

2. What is the password for this project?
(Press Enter if the prlject does not have a password.)

Default = <return>

3. What Information Exchange logon user ID would you like to use?
(Press Enter to accept the default of Ig6000000.)

lg6000000

4. What directory and file name would you like to receive?

c:\temp\recfile.txt

5. Would you like to receive as multiple files?
(Enter Y or N.)

y

6. Would you like to use the original sending file names?
(Enter Y or N.)

y

54

Chapter 5. Programming to the Java interface
The ReceiveFile program executes, the Session Status window displays, and all the
files in your mailbox are received. The DOS window then displays the receipt infor-
mation.
55

Software Development Kit Programming Guide
Database classes and methods for each class
Following is a complete list of the database classes. For more information on the
descriptions of each class and its methods, see the Appendix on the Java interface in
the Software Development Kit Programming Reference.

public class ExpAddress
public class ExpAddressList extends LinkedList
public class ExpCommProfile
public class ExpDistributionList
public class ExpDistListList extends LinkedList
public class ExpDropBox
public class ExpDropBoxList extends LinkedList
public class ExpException extends Exception
public class ExpIeLogon
public class ExpIeLogonList extends LinkedList
public class ExpJni
public class ExpMailboxItem
public class ExpMailboxItemList extends LinkedList
public class ExpOrderList extends LinkedList
public class ExpProject
public class ExpProjectList extends LinkedList
public class ExpReceiveOrder
public class ExpReceiveReceipt
public class ExpReceiptList extends LinkedList
public class ExpReceiveOrderList extends LinkedList
public class ExpReceiveReceiptList extends LinkedList
public class ExpSendOrder
public class ExpSendReceipt
public class ExpSendOrderList extends LinkedList
public class ExpSendReceiptList extends LinkedList
public class ExpSessionReceipt
public class ExpSessionReceiptList extends LinkedList
public class ExpSession
public class ExpTradingProfile
public class ExpTradingProfileList extends LinkedList
56

© Copyright GXS, Inc. 1998, 2005
Chapter 6
Sending and receiving files with

.
Expedite for Windows

This chapter explains how to use Expedite for Windows to send and receive text and
binary files. It also details information about the common data header (CDH) and the
Information Exchange translate table. Typical scenarios are included to help you learn
more about sending and receiving files.

ExpAddSendOrdr and ExpDoSendOrdr functions are considered equivalent,
except that the first adds a send order to the database to be processed later in an
unattended session, and the second processes the send order immediately in an inter-
active session.

Settings described in this book for the ExpAddSendOrdr function also apply to the
ExpDoSendOrdr function. Similarly, what is described for the ExpAddRecvOrdr
function also applies for the ExpDoRecvOrdr function.

Preparing to send and receive files
How your application sends and receives data using the Expedite for Windows
C-language interface depends on whether you choose to use an:
■ Unattended (batch) session

Where you process a list of orders in an unattended session.

■ Interactive session

Where you start the session, process the orders, retain control between order
processing, and then end the session.
57

Software Development Kit Programming Guide
Processing in an unattended session
To process a list of orders in an unattended session:

1. Define a dropoff box.
2. Define send and receive orders on the order shelf.
3. Assign orders to the dropoff box.
4. Start dropoff box processing.
5. Decide what to do if there is a dropoff box processing error.

You can use the graphical user interface or the C-language interface for any of these
steps. Even if you use the C-language interface to store orders on the order shelf or to
create dropoff boxes, you can use the GUI to view and modify the orders or process a
dropoff box.

Because your users can use the GUI to fix project problems, this simplifies your job
of writing code to make your application work effectively with Expedite for
Windows.

Processing in an interactive session
To process a list of orders with an application that uses an interactive session:

1. Start a session.
2. Issue send and receive orders.
3. Decide what to do if an error occurs with any order.
4. End the session.
5. Decide what to do if an error occurs within the session.

Planning for problem determination
You can write-protect your project so that users cannot change your order and dropoff
box definitions without knowing the password. However, for problem determination
reasons, if you specify a write password, you also must specify a read password to
allow Customer Care to view the project definitions while helping users resolve
problems.

The following sections provide more information about processing options.
58

Chapter 6. Sending and receiving files with Expedite for Windows
Using unattended (batch) sessions
It may be easier to use the GUI to create orders, store them on the order shelf, define
dropoff boxes, and add orders to them, than it is to use the C-language interface to
create unattended sessions.

However, if you cannot anticipate which files should be sent to which addresses for a
given session, you may want to use the C-language interface to dynamically create
unattended sessions.

Creating unattended sessions
To use the Expedite for Windows C-language interface to create unattended sessions:

1. Create a dropoff box using the Expedite for Windows C-language
ExpAddDropBox function, or create one in the graphical user interface.

You can add and remove orders from this dropoff box as needed, or you can
create multiple dropoff boxes to suit your needs.

2. Create send and receive orders using the ExpAddSendOrdr and
ExpAddRecvOrdr functions, specifying the file names and recipient addresses,
as needed.

3. Assign the orders to the dropoff box using the ExpAsgSendOrdrToDropBox
and ExpAsgRecvOrdrToDropBox functions.

4. Process the dropoff box using the ExpProcDropBox function.

When all the orders are processed, the ExpProcDropBox function returns control to
your application.

Expedite specifies the results of the processing as well as the name of the associated
session receipt in the ExpDropBoxProcRspStruct structure passed in the
ExpProcDropBox function.

Viewing processing results
To see the processing results for each order, use the ExpListRcptsOnSessRcpt
function to pass in the name of the session receipt returned to your application from
the output structure in the ExpProcDropBox function call.
59

Software Development Kit Programming Guide
Example of an unattended session
The following code shows some examples of how to set up an unattended session.

...
int rc = 0;
struct ExpAddDropBoxReqStruct DrInput;
struct ExpDropBoxAddedRspStruct DrOutput;
struct ExpAddSendOrdrReqStruct SnInput;
struct ExpSendOrdrAddedStruct SnOutput;
struct ExpAddRecvOrdrReqStruct RvInput;
struct ExpAddRecvOrdrAddedStruct RvOutput;
struct ExpAsgSendOrdrToDropBoxReqStruct AsgSendInput;
struct ExpAsgRecvOrdrToDropBoxReqStruct AsgRecvInput;
struct ExpProcDropBoxReqStruct ProcDrbxInput;
struct ExpDropBoxProcRspStruct ProcDrbxOuput;
struct ExpRecoverSessRcptReqStruct SessRcptInput;
struct ExpSessRcptRecoveredStruct SessRcptOutput;

/* Set up the dropoff box attributes */
...
/* Add the new dropoff box, exit if error */
rc = ExpAddDropBox(&DrInput, DrOutput);
if (rc)
 goto exit;

/* Set up the send and receive orders */
...
/* Add send order */
rc = ExpAddSendOrdr(&SnInput,&SnOutput);
if (rc)
 goto exit;

rc = ExpAddRecvOrdr(&RvInput, &RvOutput);
if (rc)
 goto exit;

/* Assign them to the dropoff box */
rc = ExpAsgSendOrdrToDropBox(AsgSendInput);
if (rc)
 goto exit;
rc = ExpAsgRecvOrdrToDropBox(AsgRecvInput);
if (rc)
 goto exit;
/* Wait while Expedite processes the dropoff box */
rc = ExpProcDropBox(ProcDrbxInput, &ProcDrbxOutput);
60

Chapter 6. Sending and receiving files with Expedite for Windows
/* Save the session receipt name */
strncpy(SRcptName, ProcDrbxOutput.SRcptName,
 EXP_MAXLEN_PD_SRCPT_NAME);

/* Process the results */
if (rc > 0)
 {
 /*Reset the session */
 ExpAddField(SessRcptInput.Recovery, “R”);
 ExpAddField(SessRcptInput.SRcptName, SRcptName);
 rc = ExpRecoverSessRcpt(&SessRcptInput, &SessRcptOutput);
 ...
 }
61

Software Development Kit Programming Guide
Using interactive sessions
With the Expedite for Windows C-language interface, an application can control the
flow of the session.

To control the session:

1. Use the ExpStartSess function to ask Request Manager to start interactive order
processing.

2. To process an order immediately, use the ExpDoSendOrdr or ExpDoRecvOrdr
functions for orders not kept on the order shelf.

3. Use the ExpDoQuryOrdr function to get a list of items in the mailbox.

4. Use the Msgkey field from the ExpDoQuryOrdrDoneRspStruct structure for
the ExpDoPurgOrdr function to delete an item from the mailbox.

5. If an error has occurred, use the ExpGetError function immediately after
checking the return code to get a text message describing the problem.

6. When you are done processing orders, use the ExpEndSess function to end the
session with Information Exchange.

a. Expedite for Windows adds a receipt for each order to the session receipt for
the session processing, and returns control to your application as soon as
each order is processed. The session receipt information is returned to the
application in the output structure you provided for the ExpEndSess
function call.

b. For each send or receive order, you will receive a summary of the order’s
processing, showing how many files were sent or received as a result of the
order.

7. Use the ExpListRcptsOnSessRcpt function to see the details of the order
processing.

8. If you need to see the detailed results of a specific order, specify the search
criteria in the ExpListSendRcpt or ExpListRecvRcpt functions to retrieve
specific receipts.

9. To get a detailed message describing an error on a receipt, use the
 ExpRetrieveErrTxt function with the receipt name and error number.
62

Chapter 6. Sending and receiving files with Expedite for Windows
Session recovery for interactive sessions
If an error occurs, the action of your application determines the recovery of the
session. If either a function or the order processing fails, your application determines
whether or not to continue. If your application does not end the session, but closes the
project or otherwise exits, Expedite ends the session automatically.

You can select only file-level recovery for an interactive session recovery. In file-
level recovery, the file is committed as each send or receive file order is processed.

Example of an interactive session
The following code sample shows some examples of using an interactive session. It
does not include the code to set up the orders.

...
int rc;
struct ExpDoSendOrdrReqStruct SnInput;
struct ExpDoRecvOrdrReqStruct RvInput;
struct ExpSendOrdrDoneRspStruct SnOutput;
struct ExpRecvOrdrDoneRspStruct RvOutput;
struct ExpStartSessReqStruct StartSessInput;
struct ExpSessStartedRspStruct StartSessOutput;
struct ExpEndSessReqStruct EndSessInput;
struct ExpSessEndedRspStruct EndSessOutput;
/* Initialize structures */

ExpResetMem((char *)&SnInput,
 sizeof(struct ExpDoSendOrdrReqStruct));
...

/*
 * Calls to open the C-API and open the Project, and open
 * the message system are not shown here.
 */
...

/*
 * Add the required fields for the session start
 */
 ExpAddField(StartSessInput.ProjName, “Personnel”);
 ExpAddField(StartSessInput.IeMboxIdName, “USER1”);

rc = ExpStartSess(&StartSessInput, &StartSessOutput);
if (rc)
 {
 /* Display the session start error and exit */
 ...
 goto exit;
63

Software Development Kit Programming Guide
 }

/* Send a file */

ExpAddField(SnInput.Fileid, “c:\records\employee.rec”);
ExpAddField(SnInput.Nickname, “Headquarters”);
ExpAddField(SnInput.AddrType, “E”);
rc = ExpDoSendOrdr(&SnInput, &SnOutput);

/*If only a warning, then continue, else exit */
if (rc > 4)
 {
 /* Display the send-file error and exit */
 ...
 goto exit;
 }

/* Receive a file */
ExpAddField(RvInput.Fileid, “c:\money\employee.sal”);
ExpAddField(RvInput.Class, “Salary”);
rc = ExpDoRecvOrdr(&RvInput, &RvOutput);
if (rc)
 {
 /* Display the receive-file error and exit */
 ...
 goto exit;
 }

exit:

/* End the session */
rc = ExpEndSess(&EndSessInput, &EndSessOutput);
if (rc)
 {
 /* Display the error */
 }

/* Calls to close the message system, project, and the */
/* C-API are not shown.*/
...
64

Chapter 6. Sending and receiving files with Expedite for Windows
Addressing files
Just as the address on an envelope must contain the proper address elements for
delivery, so must the files you send to Information Exchange contain the proper
address. When you send files, specify the Information Exchange mailbox address.

Expedite for Windows recognizes the following four address formats:

■ Nicknames
■ Account IDs, user IDs, and system IDs
■ Centralized Information Exchange alias tables
■ Distribution lists

Using nicknames
The most common and easiest way to address files is to use a nickname. You can
create a nickname for each address when you set up your address book, and use the
nickname when you create an order. For more information, see the Expedite for
Windows User’s Guide.

Using account IDs, user IDs, and system IDs
The Information Exchange mailbox address has two parts unique to each Information
Exchange system: the account ID and the user ID.

When sending files to a user on the same Information Exchange system, specify the
account ID and user ID. Each ID field is 1 to 8 characters in length.

When sending files to a user on another Information Exchange system, specify the
system ID, the account ID, and the user ID. The system ID is 1 to 3 characters.

Using centralized Information Exchange alias tables
An alias table is a list of alternate names that you can use to send files to other users.
Alias tables are permanent tables residing within Information Exchange that you can
make available to your users. These include:

■ Global alias table - for all Information Exchange users

■ Organization alias table - for members of a particular account

■ Private alias table - for a single user

Use Information Exchange Administration Services to create and maintain alias
tables.
65

Software Development Kit Programming Guide
Using distribution lists
A distribution list is another way to send files to more than one person at a time by
making a list of users and sending the file to the list. There are two types of distri-
bution lists:

■ Temporary

Temporary distribution lists are created by Information Exchange and last only
for the duration of your Information Exchange session. When your Information
Exchange session ends, the system deletes the temporary lists.

■ Permanent

Not currently available in Expedite for Windows

Sending and receiving e-mail
Electronic mail (e-mail) is correspondence in the form of a file transmitted over a
computer network. Various software packages handle e-mail differently, but all
should ensure that the e-mail file looks the same to the receiver as it does to the
sender.

Information Exchange e-mail files are made up of 79-byte records, padded with
blanks if necessary. The 79-byte records are each followed by the characters that
normally delimit records for the type of platform being used; for example, carriage-
return line-feed (CRLF) characters. Information Exchange interfaces mark e-mail
files as user class FFMSG001, so the receiving system knows how to format the e-
mail.

Creating an e-mail file
To create an e-mail file:

1. Use an editor to create the text for the file with lines no longer than 79 bytes.

2. End each line with a CRLF character.
66

Chapter 6. Sending and receiving files with Expedite for Windows
Sending an e-mail file
To send the file, use the ExpAddSendOrdr function with the Format field of the
ExpAddSendOrdrReqStruct structure set to Y.

This tells Expedite for Windows to:

■ Pad each line of text with blanks up to 79 bytes, or split lines that are greater than
79 bytes

■ Add CRLF characters to each line

■ Send the file with a user class of FFMSG001

Receiving an e-mail file
When you receive e-mail, set the Format field in the ExpAddRecvOrdrReqStruct
structure to Y for the ExpAddRecvOrdr function, so that the file is properly received
in the Expedite for Windows e-mail format for viewing.

Sending and receiving ASCII text files
Generally, readable text on PCs consists of ASCII characters; whereas, readable text
on most mainframe computers consists of EBCDIC characters. When Expedite for
Windows sends a file, it does not know the receiving system type. Because the Infor-
mation Exchange application resides on a host (mainframe) system, Expedite for
Windows translates all ASCII (text) files to EBCDIC and marks the files as EBCDIC
in the common data header (CDH) of each file.

When Expedite for Windows receives a file, it checks the CDH to see if the file is
EBCDIC or binary. If the file is EBCDIC, it translates it to ASCII. If the file type is
unknown because there is no CDH, Expedite for Windows assumes the file is
EBCDIC and translates it to ASCII.

NOTE: You can use the MsgClass field of the ExpAddSendOrdr function
to specify a user class other than FFMSG001. However, the receiving
system may not automatically recognize the files as having the Information
Exchange e-mail format.
67

Software Development Kit Programming Guide
Sending and receiving ASCII binary files
When sending ASCII binary data to Information Exchange, avoid translating the
binary data from ASCII to EBCDIC, because any changes to the binary data may
render it unusable. Set the Datatype field to B on the ExpAddSendOrdrReqStruct
structure to send ASCII binary files to Information Exchange and specify that it not
be translated from ASCII to EBCDIC.

When Expedite for Windows receives a file, it checks the CDH to see if the file is
binary. If so, it does not translate the data from EBCDIC to ASCII when receiving it.

Understanding the translate table
You can use the Information Exchange translate table, or an alternative Expedite for
Windows translate table, for ASCII to EBCDIC translation.

The Information Exchange translate table, IESTDTBL, cannot be altered as it is
contained within Expedite for Windows. It is not included on your program files. For
a description of the Information Exchange translate table, see the Software Devel-
opment Kit Programming Reference.

The Expedite for Windows program provides two alternate translate tables. The first
table, IBM3270.XLT, corresponds to IBM Personal Communications/3270 program.
The second table, NOXLATE.XLT, provides no translation at all. When Expedite for
Windows receives a file that does not have a CDH, it assumes the file is EBCDIC and
translates it to ASCII. If your trading partner uses a product that does not support the
CDH and sends you a binary file, use the NOXLATE.XLT table to receive the file to
ensure that it will not be altered.

To change translate tables, use the XlateTbl field in the input structure for the
ExpAddSendOrdr, ExpAddRecvOrdr, and ExpAddDropBox functions.

NOTE: When you send a file to another PC, the alternate translate table
used to send the file must be available on the receiving PC. If the alternate
translate table is not available, the data is received as-is and may be
unusable.
68

Chapter 6. Sending and receiving files with Expedite for Windows
Using an alternate translate table
The following scenario and its code example illustrate specifying an alternate
translate table using the XlateTbl field on the ExpAddSendOrdr function.

Company A uses a PC to send files to a trading partner. The trading partner uses a
mainframe computer to receive and download the files to a PC using a 3270
emulation program. Because Company A knows how its trading partner receives
files, it uses the IBM3270.XLT alternate translate table. This ensures translation on
the sending system is the same as on the receiving system, and ensures that data is not
damaged during translation.

ExpAddSendOrdrReqStruct Input;
int rc;

ExpResetMem((char *)&Input, sizeof(ExpAddSendStruct));

ExpAddField(Input.OrdrName,SendOrder1);

ExpAddField(Input.Fileid, “file1.fil);

ExpAddField(Input.IeMboxId, “acct user01”);

ExpAddField(Input.XlateTbl, “IBM3270”);

rc = ExpAddSendOrdr(&Input, NULL);
if (rc)
 goto exit;
...

The XlateTbl field tells Expedite for Windows to use IBM3270.XLT to translate the
data in the files from ASCII to EBCDIC. When the trading partner receives and
downloads the files to the PC, the data looks the same as it did on Company A’s
mainframe computer.

NOTE: The ExpAddField function, which is included in the Expedite for
Windows C-language interface DLL, is used in the following example.
ExpAddField takes a value and puts it in the structure field. You should
initialize the structure to blanks first.
69

Software Development Kit Programming Guide
Understanding recovery levels
Information Exchange supports several levels of recovery for a failed session, and
Expedite for Windows can automate the recovery process for your application on
these levels.

For unattended sessions, you can use one of the following recovery methods:

■ Select a dropoff box recovery level before the session is run

■ Allow the application to determine whether to recover the dropoff box using
checkpoint-level or file-level recovery

Session-level, checkpoint-level, and file-level recovery are Information Exchange
methods that Expedite for Windows uses to recover data at specific checkpoints. If
you use session-level recovery when an error occurs, Expedite for Windows must
retransmit all data for the entire session. If you use checkpoint-level or file-level
recovery, Expedite for Windows can recover data more efficiently. Checkpoint-level
recovery is the default.

To request a recovery method, use one of the following values for the DropRecovery
field on the ExpAddDropBox function.

The processes for using checkpoint-level and file-level recovery are very similar.
Considerations for restarting after an error and resetting the Expedite for Windows
session apply to all three recovery methods.

Before you decide to restart or reset a session as part of recovery following a session
error, consider the following:

■ You should not run multiple sessions for the same Information Exchange account
ID and user ID from different machines.

If you begin an Information Exchange session using checkpoint-level or file-
level recovery while another Information Exchange session with the same
account and user ID is running, Information Exchange ends the first session and
continues the second session. The results in the first session depend upon
whether a checkpoint ended successfully.

S Session-level recovery

C Checkpoint-level recovery (default)

F File-level recovery
70

Chapter 6. Sending and receiving files with Expedite for Windows
■ If a checkpoint ends successfully, Information Exchange delivers any data sent
prior to the checkpoint, and deletes any received data from the mailbox prior to
the checkpoint.

■ If a checkpoint does not end successfully, Information Exchange does not deliver
any data and does not delete any received data from the mailbox.

This means that data received in the first session may be received again in error.
In either case, you may get an error when you restart the first session.

The following table describes when Expedite does data recovery:

Checkpoint-level recovery File-level recovery

• After sending the number of bytes
you specify in the CommitData field
of the ExpAddDropBox function
(default is 141,000 bytes)

• After processing a send order, if the
next order is not another send order

• While receiving files, if the files
were segmented when they were
sent

• At the end of processing a receive
order

• After each file or EDI envelope is
sent.

• After each file is received
71

Software Development Kit Programming Guide
Post-session processing for checkpoint-level and file-level
recovery

When a session receipt status code is greater than 4, the session can be recovered.

The Information Exchange logon ID associated with the session must exist and must
be disabled. The session control files must exist in the logon ID control file directory.

Under normal circumstances, the logon ID and the control files will be intact.
Expedite for Windows does not allow a logon ID to be deleted if it is disabled or if it
is used by any dropoff boxes.

Do not modify or delete Expedite control files in the CONTROL subdirectory under
the install directory (for example, c:\expedite\control*.*). If any of the conditions are
not met, Expedite for Windows cancels the session automatically (since it cannot be
recovered), enables the logon ID, and returns an error.

Resetting sessions after recovery
If you reset a session, Expedite for Windows marks as pending those orders that are
not completely committed and completed, and it enables the Information Exchange
logon ID. If the session receipt is selected, the processing starts with the first pending
order at the beginning of the file and completes the session.

To reset sessions that end unsuccessfully, consider the following:

■ If the session is unsuccessful, process the files received and committed or move
them to another location. The order receipts will have a C (committed)
CmmtCode for the files that were sent and received successfully.

■ Erase the files sent or move them to another location. If you have multiple EDI
envelopes in a file and some of the envelopes were processed, remove the
processed envelopes from the file so Expedite for Windows does not send them
again.

■ When creating a receive order, specify MultFiles as Y (yes) and Overwrite as G
(generate a new file) so that any additional files received are written to new files.

■ If you select MultFiles as N (no) and/or Overwrite as A (append), the new files
are appended to the files received before the session ended unsuccessfully.

NOTE: Some of the files associated with the reset session may be
committed and will not be sent or received again.
72

Chapter 6. Sending and receiving files with Expedite for Windows
Example of a session reset
The following example illustrates when a session reset is necessary. In this case, the
session end return code is 24100, which indicates that the session and Information
Exchange checkpoints do not match. This usually is caused by using the same
account and user ID to access Information Exchange at the same time on different
machines.

In this example, you are sending 10 files to account ID act1 and user ID user01, and
the session ends in error. The following, which is a code fragment of a batch session,
shows how to reset the session if dropoff box processing fails:

ExpProcDropBoxReqStruct ProcDrbxInput;
ExpDropBoxProcRspStruct ProcDrbxOutput;
char SRcptName[EXP_MAXLEN_PD_SRCPT_NAME +1];

/* Initialize structures */

ExpResetMem(ProcDrbxInput,
 sizeof(struct ExpProcDropBoxReqStruct));
...

/* Specify required ProcDropBox fields */
ExpAddField(ProcDrbxInput.DropBoxName, “Midnight ship”);
ExpAddField(ProcDrbxInput.ProjName, “Shipping”);
...
/* Wait while Expedite processes the dropoff box */
rc = ExpProcDropBox(ProcDrbxInput, &ProcDrbxOutput);

 /* Save the session receipt name */
 strncpy(SRcptName, ProcDrbxOutput.SRcptName,
 EXP_MAXLEN_PD_SRCPT_NAME);

 /* Process the results */
 if (rc > 0)
 {
 /*Reset the session */
 ExpAddField(SessRcptInput.Recovery, “R”);
 ExpAddField(SessRcptInput.SRcptName, SRcptName);
 rc = ExpRecoverSessRcpt(&SessRcptInput, &SessRcptOutput);
 ...
 }
73

Software Development Kit Programming Guide
Restarting and canceling sessions after recovery
If you restart a session, the session begins where it left off. In this case, Expedite for
Windows may resume in the middle of a file. The processing starts at the last check-
point in the first pending order.

If you cancel a session, Expedite for Windows marks unprocessed orders as canceled
and enables the Information Exchange logon ID.

Checkpoint-level recovery and receipts
Order receipts show several types of status. The StatusCode field is a 5-digit number
for an error that occurred. With this field, Expedite for Windows (or your application)
associates text describing the message and offers response information.

In the case of send/receive orders, more than one receipt can be created. If you send a
file with multiple EDI envelopes, Expedite for Windows separates the envelopes into
individual files, resolves the address found in the EDI header, sends each as a separate
file, and creates a receipt for each envelope processed.

For a receive order, more than one file in your mailbox may match the specified
search criteria, resulting in these multiple files being received with a receipt for each
file.

The first receipt created for each order is the OrdrStatus (order status) stating if the
order is pending, issued, completed, or canceled. Each receipt contains a CmmtCode
(commit code) field, which shows whether Expedite for Windows has committed the
file associated with the receipt.

Depending on the type of session recovery selected, order receipts may show different
combinations of OrdrStatus and CmmtCode.

■ For session-level recovery, no files are committed until the session is ended
successfully.

■ For file-level recovery, each file is committed after it has been sent or received.

■ For checkpoint-level recovery, data is committed according to the Commitdata
and Maxmsgs options specified in the dropoff box (or sessions start request) for
the session.

When using checkpoint-level session recovery, even if an order is completed, all the
data may not be committed. Each order receipt shows whether the data was
committed.
74

Chapter 6. Sending and receiving files with Expedite for Windows
If a send order is marked “Completed,” but not all the order receipts are marked
“Committed,” it means that some data was sent but not committed yet, and it will be
sent again if the session is resumed and committed at the appropriate time. The
recipient will receive all the data and no duplicate data.

Post-session processing for session-level recovery
When you encounter an error while using session-level recovery to transmit data,
Expedite for Windows stops transmission and produces a session receipt with an error
code. You can check this error code to determine the cause of the error and correct the
problem. With session-level recovery, if data transmission stops, you must send or
receive all files again. If you were processing a dropoff box, initiate the processing
again.

Although it takes time to retransmit a large amount of data, there are advantages to
using session-level recovery in the following cases:

■ If you want to transmit all or none of the data

■ If you transmit small amounts of data

Overwrite options
Unlike the Expedite Base for Windows product, the Expedite for Windows product
usually does not allow files to be overwritten as a result of session reset or restart
errors, because the mailbox ID is disabled for a session in checkpoint recovery state.
However, if you specify Overwrite as Y for a dropoff box or on a receive order, and
you process the dropoff box twice without processing files received in the first
processing, the files will be overwritten in the second processing.

NOTE: Do not start an Information Exchange session using session-level
recovery while another Information Exchange session with the same
account and user ID is running. If you do, Information Exchange ends the
first session and starts the second session. Information Exchange does not
deliver data sent in the first session, and does not delete received data from
the mailbox. This means that data received in the first session may be
received again in error, so the session results may be unpredictable.
75

Software Development Kit Programming Guide
Receiving multiple files
When Expedite for Windows processes a receive order, it uses the attributes on the
order to determine which files to receive from Information Exchange.

You can specify that Expedite for Windows receives:

■ All files in the mailbox

■ All files sent from a specific account and user ID

■ All files with a specific user class

■ Any combination of the above

In the receive order, you must specify the name of the file in which Expedite for
Windows is to place the received data. If you have more than one file in your
mailbox, you can receive the files from the mailbox into a single file, or receive each
file into a separate file. When you receive multiple files from your mailbox into a
single file, Expedite for Windows appends the files in the order it receives them. This
is the default for receiving multiple files.

To receive multiple files from your mailbox in separate files, specify the value Y in
the MultFiles field. Expedite for Windows places the first file in the file you specified
and places subsequent files in consecutive files, incrementally numbered, starting
with a file extension of 002. For example, if you specify FileID “test.msg” and three
files are received, Expedite for Windows names the files:

 File 1 = TEST.MSG
 File 2 = TEST.MSG.002
 File 3 = TEST.MSG.003

If you receive 1000 or more files, files 1001, 1002, and 1003 are named as follows:

 File 1001 = TEST.MSG.1001
 File 1002 = TEST.MSG.1002
 File 1003 = TEST.MSG.1003

If you receive more than 99999 files, the data in the files after file 99999 is appended
to a file with the extension of.ovf.

NOTE: When you receive multiple files from your mailbox into a single
file, specify the value Y in the Remove eof field on a receive order to
remove all end-of-file (EOF) characters before Expedite for Windows
places the files on your PC. Otherwise, when you print a file that contains
multiple files with EOF characters, the EOF character is interpreted as the
end of the file and the data following that character may not print.
76

Chapter 6. Sending and receiving files with Expedite for Windows
Using Expedite.ini to create file names for multiple files
If you want Expedite for Windows to create file names for received files using the
traditional format, you can add FileNameFormat=1 to the ProtocolHandler section of
the Expedite.ini file. When receiving multiple files from your mailbox, the second
and subsequent files will have a name consisting of the file name specified on the
receive command without the extension and with an added sequence number. For
example, receiving multiple files using the file name afile.txt results in the following
files being received:

 afile.txt, afile.002, afile.003, ...

If you do not want the files named in the traditional way, do not specify
FileNameFormat=1. An alternate style of file names will be used. For example,
receiving multiple files using the file name afile.txt results in the following files being
received:

 afile.txt, afile.txt.002, afile.txt.003, ...

Receiving specific files
You can specify certain criteria on the Receive order to limit the files that you receive.
For example, you can receive all files from a particular user, all files with a particular
user class, or files with specific dates and times.

Receiving files from a specific time
You can use the Receive order to specify a date and time range for files you want to
receive. Expedite for Windows checks the date and time the files were sent to you and
gives you those files that fall within the specified range.

For example, to receive only those files sent to you between 12:00 noon and 6:00 p.m.
on June 14, 1999, set up the Receive order as follows:

ExpAddField(RvInput.StartDate, “19990614120000”);

ExpAddField(RvInput.EndDate, “19990614180000”);

77

Software Development Kit Programming Guide
Receiving a single, specific file
Expedite for Windows also allows you to receive a single, specific file even if other
files in your mailbox are from the same sender or have the same user class. Each file
in your mailbox has a unique message key that distinguishes the file from all others.

To receive a specific file, issue a Receive order using the Msgkey field to specify the
unique message key of the file you want to receive.

To determine the Msgkey:

■ Issue an ExpDoQuryOrdr function call, and then examine the ExpDoQury-
OrdrDoneRspStruct Msgkey fields

OR

■ Use Information Exchange Administration Services

For example, there may be three files in your mailbox from the same user, with the
same user class. The files were sent to your mailbox on three consecutive days.
However, you are only interested in receiving the first file, which has a unique
message key of 887A9DE0021FA9C236F8.

Your ExpDoRecvOrdrReqStruct setup code might look as follows:

ExpAddField(RecvInput.Msgkey, “887A9DE0021FA9C236F8”);
or
memcpy(RecvInput.Msgkey, QueryOutput.Msgkey, 20);

As a result of this command, Expedite for Windows receives only the file with this
particular message key.
78

© Copyright GXS, Inc. 1998, 2005
Chapter 7
Sending and receiving EDI data with

.
Expedite for Windows

You can use Expedite to send and receive data formatted for electronic data inter-
change (EDI). Expedite provides the options Sendedi and Receiveedi on the
ExpDoSendOrdr and ExpDoRecvOrdr functions to transmit EDI data. Use the
value of Y in these fields to indicate the data should be treated as EDI data.

Understanding how Expedite sends EDI data
Information Exchange uses a two-part address to deliver mail to a trading partner’s
mailbox. The address consists of the account ID and user ID.

Information Exchange must have the account ID and user ID of the destination
mailbox in order to deliver the file. Expedite allows users to create a nickname to
represent the account ID and user ID of trading partners.

However, Expedite handles EDI data differently than does Information Exchange.
When you send an EDI file with Expedite, the data in the file contains the destination
address:

■ In X12 data, the destination is stored in the ISA segment

■ In UCS data, the destination is stored in the BG segment

■ In EDIFACT data, the destination is stored in the UNB segment

■ In UN/TDI data, the destination is stored in the STX segment
79

Software Development Kit Programming Guide
Specifying addresses
EDI standards allow you to specify addresses using different conventions. For
example, you can:

■ Specify a Dun and Bradstreet (DUNS) number for the address.

■ Use phone numbers with Expedite and Information Exchange.

You can continue to use these kinds of addressing conventions, but you must provide
information so that the various addresses can be converted to the account ID and user
ID that Information Exchange needs to deliver the file.

Transmitting EDI envelopes
A group of EDI transactions with a single destination address is an EDI envelope,
which consists of:

■ The EDI header

■ The data in the EDI transactions

■ The EDI trailer

The EDI header contains the destination address for the data within the envelope. The
format of the headers, data, and trailers differs depending on what type of EDI data is
sent. When creating a Send order, you do not need to specify the destination address
because Expedite can get the address from the data.

To indicate to Expedite that the data is EDI, use the ExpDoSendOrdrStruct or
ExpAddSendOrdrStruct structures:

1. Specify the Nickname as EDI

2. Specify the AddrType field as E

3. Specify the Sendedi field as Y

Expedite can transmit multiple EDI envelopes with different addresses contained in a
single file with a single send order. It can also transmit multiple types of EDI data
from a single file. You can combine X12, UCS, EDIFACT, and UN/TDI data in one
file and transmit it to multiple Information Exchange destinations with one Send
order.
80

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Using the Send order, you can send data to Information Exchange without specifying
an Information Exchange destination as part of the order. Expedite can match EDI
destinations contained in the EDI data to Information Exchange destinations.

Expedite determines where to send an EDI envelope by examining the contents of the
envelope. The envelope definition (the type of EDI data you are transmitting) deter-
mines the location of the destination within an EDI envelope. Expedite must read the
envelope header to extract the destination address. Expedite converts that address to a
valid Information Exchange account ID and user ID mailbox address.

The following sections explain how Expedite converts the EDI address.

Using EDI envelopes
When you send EDI transactions, you can group the EDI transactions for a single
destination within a single envelope.

The EDI envelope definitions for each EDI data type are as follows:

The type of EDI data you are transmitting determines the location of the destination
within an EDI header.

Expedite for Windows locates the EDI destination as described in the following table.

This EDI data type: Uses this EDI envelope definition:

X12 Data between and including the ISA and IEA segments.

EDIFACT Data between and including the UNA (or UNB) and UNZ
segments.

UN/TDI Data between and including the SCH (or STX) and END
segments.

UCS Data between and including the BG and EG segments.
81

Software Development Kit Programming Guide
Resolving EDI destinations
Before sending EDI data, you should understand how Expedite converts EDI destina-
tions to Information Exchange addresses.

Each Information Exchange mailbox is identified by a unique address. When you
send data to Information Exchange, you must provide information so Information
Exchange can determine the correct destination mailbox address. Information
Exchange and the Expedite products can work with three different forms of
addresses:

■ Account ID and user ID

Information Exchange must have the account ID and user ID in order to deliver
the data to the proper mailbox.

■ Alias table and alias name

Information Exchange uses tables to convert the alias table and alias name
combinations that you provide to the corresponding account ID and user ID.

This EDI data type: Contains the EDI destination in this segment:

X12 ISA. Expedite takes the actual EDI destination from the
interchange receiver ID element (ISA08), and the EDI
qualifier from the interchange ID qualifier element
(ISA07).

EDIFACT UNB. Expedite takes the destination from data element
0010 in composite data element S003 (Interchange
Recipient), and the EDI qualifier from the data element
0007 in composite data element S003 (Interchange
recipient).

UN/TDI STX. Expedite takes the destination from the first
subelement of the UNTO element (the recipient code
address). If it does not find the recipient code, it uses the
second subelement of the UNTO element (the recipient
clear address) as the actual Information Exchange
address.

UCS BG. Expedite takes the destination from the application
receiver’s code (BG04) element.
82

Chapter 7. Sending and receiving EDI data with Expedite for Windows
■ List

When you send to a list, you should have defined a list of account IDs and user
IDs, or alias tables and alias names.

The simplest scenario is specifying the destination address in the EDI data in terms of
an Information Exchange account ID and user ID. This way, Expedite does not have
to convert the address.

Providing destination address information in tables
EDI standards define sets of rules for specifying destination addresses. If you want to
send EDI data to Information Exchange using a destination address other than an
Information Exchange account ID and user ID, you must provide additional infor-
mation so that Expedite and Information Exchange can convert an EDI address to an
address that Information Exchange understands.

You provide this information using three tables:

■ Qualifier

■ Destination

■ Alias
83

Software Development Kit Programming Guide
An overview of these tables is provided in the following flowchart, and a discussion
of how the tables work is provided in the following sections. For more details, see
“Creating tables for destination resolution” on page 100.

Figure 2. How the Send order locates EDI destinations

Bypassing tables
If you need to send only EDIFACT, X12, or UN/TDI data to an Information Exchange
destination, and you specify an Information Exchange destination in the EDI header,
you can bypass the tables and send the EDI data directly to an Information Exchange
destination.

EDIFACT or X12 data
To send EDIFACT or X12 data to an Information Exchange destination contained
within the EDI data:

1. Place ZZ in the receiver ID qualifier of the EDI header.

2. Use the Information Exchange account ID and user ID as the actual EDI desti-
nation.

• For X12 data, separate the account ID and user ID by at least one blank.
Otherwise, Expedite will use the first 7 characters as the account ID and the
last 8 characters as the user ID.

EDI Envelope

Qualifier table

Alias table

Destination table

Information Exchange mailbox
84

Chapter 7. Sending and receiving EDI data with Expedite for Windows
• For EDIFACT data, you must separate the account ID and user ID by a
period (.), slash (/), or blank.

3. Use the send order to send the file containing your EDI data.

When you use a ZZ qualifier, Expedite tries to resolve the destination by searching
the tables. When it does not locate the destination in the tables or the tables do not
exist, Expedite sends the data to the specified Information Exchange account ID and
user ID.

When you use a blank qualifier in the EDI header for X12 data, Expedite does not
refer to the tables first. For EDIFACT data, however, a blank qualifier is treated the
same way as any other qualifier and does not result in the tables being bypassed.

UN/TDI data
To send UN/TDI data to an Information Exchange destination contained within EDI
data, follow these steps:

1. Do not specify the recipient code (UNTO:1).

2. Specify the Information Exchange account ID and user ID in the recipient clear
address (UNTO:2). You must separate the account ID and user ID by a period (.),
slash (/), or blank.

3. Use the Send order to send the file containing your EDI data.

Intersystem addressing
You can use intersystem addressing to transmit EDIFACT or UN/TDI data. To do
this, you place an Information Exchange address in the EDIFACT or UN/TDI header,
specifying the appropriate identifying information in the following order:

■ System ID (not required if the sender and receiver are using the same system)

■ Account ID

■ User ID

All the IDs must be separated by one of the following:

■ Period (.)

■ Slash (/)

■ One or more blank spaces
85

Software Development Kit Programming Guide
For EDIFACT data, the receiver code (data element 0010 in composite data element
S003, Interchange Recipient) is split into the system ID, account ID, and user ID.

For UN/TDI data, the recipient clear code (UNTO:2) is split into the system ID,
account ID, and user ID.

Using tables for UCS data
If you are sending UCS data to Information Exchange, you cannot bypass the use of
tables. You must have one of the following in order to send UCS data:

■ A ttable01.tbl file that specifies an Information Exchange account ID and user ID
for the UCS destination address.

■ A qualtbl.tbl file that identifies an Information Exchange alias table. The alias
table must have an entry with the UCS destination address and the associated
Information Exchange account ID and user ID.

■ A qualtbl.tbl file that identifies a destination table to be used to translate the UCS
destination address to an Information Exchange account ID and user ID.

How Expedite determines destinations without tables
When Expedite cannot find a destination or qualifier table, it determines the Infor-
mation Exchange destination for each EDI data type as follows:

If the EDI data is:
Expedite determines Information Exchange destination as
follows:

X12, and the qualifier
is ZZ or blank

The Expedite order splits the receiver ID into an account
ID and a user ID. Expedite looks for a blank character as
the separator between account ID and user ID.
Otherwise, it uses the first 7 characters as the account ID
and the last 8 characters as the user ID.

X12, and the qualifier
is not ZZ or blank

This is an error. Expedite does not send the data.

EDIFACT, and the
qualifier (0007 in
composite data
element S003, Inter-
change Recipient) is
ZZ or blank

Expedite splits the receiver code, which is 0010 in
composite data element S003 (Interchange Recipient),
into the account ID and user ID. The account ID and user
ID are separated by a period (.), slash (/), or by one or
more blank spaces.
86

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Using EDI destination tables
If you do not specify Information Exchange destinations in the EDI header, you must
first create an EDI destination table so that the EDI destination can be converted to an
Information Exchange address. It is important that destination tables are stored in the
subdirectory named SHARED in the Expedite install directory.

Think of an EDI destination table as a list of EDI destinations paired with Information
Exchange destinations. Expedite resolves destinations by searching for an EDI desti-
nation and then using the corresponding Information Exchange destination as the
actual address for an envelope.

EDIFACT, and the
qualifier (0007 in
composite data
element S003, Inter-
change Recipient) is
not ZZ or blank

This is an error. Expedite does not send the data.

UN/TDI, and the
recipient code
(UNTO:1) is not
specified

Expedite splits the recipient clear code (UNTO:2) into an
account ID and user ID. The account ID and user ID are
separated by a period (.), slash (/), or by one or more
blank spaces.

UN/TDI, and
UNTO:1 was
specified

This is an error. Expedite does not send the data.

UCS This is an error. Expedite does not send the data.

If the EDI data is:
Expedite determines Information Exchange destination as
follows:
87

Software Development Kit Programming Guide
Creating destination tables
You can create these tables using a plain text editor. If you created tables for Expedite
4.x, you can use the same tables for Expedite 5 and higher. The following is an
example of the syntax for the file:

#comment or description
parameter(value) parameter(value) ... parameter(value);

where:

#
Defines a comment line. Expedite ignores any characters on a line after this
symbol.

parameter
Defines a table entry. Parameters are not case sensitive.

value
Defines the value associated with a table entry. Values are not case sensitive.

;
Ends the table entry.

Each set of parameters and values, ended by a semicolon, defines one entry in the
table. The entries can span several lines in a table file. However, the following limita-
tions apply:

■ Type the entire parameter name (for example, edidest) on a single input line.

■ Ensure that a left parenthesis immediately follows each parameter.

■ Do not use spaces between parameter names and values, and end each entry with
a semicolon.
88

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Naming destination tables
EDI destination tables have the following default naming convention:

Sending EDI data using a destination table
To send EDI data to a destination you define in an EDI destination table, follow these
steps:

1. Build an EDI destination table containing your EDI destination and the corre-
sponding Information Exchange destination.

This table has the filename TTABLExx.TBL, where xx is the receiver ID
qualifier in the EDI header.

2. Use a Send order to send the file containing your EDI destination.

This EDI data type: Defaults to this EDI destination table:

X12 TTABLExx.TBL, where xx is the 2-character ID
qualifier

EDIFACT TTABLExx.TBL, where xx is the first 2 characters of the
ID qualifier

UN/TDI IEUNTDI.TBL

UCS TTABLE01.TBL
89

Software Development Kit Programming Guide
Example of sending EDI data with destination table
The following example shows the tables Expedite uses to send an X12 file to a trading
partner with an EDI destination of testdun1 and a qualifier of 01.

Figure 3. Sending an X12 file with an EDI destination table.

In this example, the receiver ID is testdun1 and the receiver ID qualifier is 01. An EDI
qualifier table is not used.

Expedite searches the EDI destination table ttable01.tbl for the receiver ID testdun1
and converts the address to Information Exchange account ID ieacct1 and Infor-
mation Exchange user ID ieuser1. The table ttable01.tbl is the default destination
table for X12 data using an 01 receiver ID qualifier.

Using EDI qualifier tables
EDI qualifier tables tell Expedite which EDI destination table to use for this
conversion. If you do not provide an EDI qualifier table, Expedite uses the default
naming convention specified in the table in “Naming destination tables” on page 89.

If you find that the default naming convention is unsatisfactory, you can override the
default destination table file names using the EDI qualifier table. The EDI qualifier
table specifies a list of EDI destination tables to be used for specific types of EDI
data.

Qualifier tables have the same syntax rules as a destination table.

ISA...01...TESTDUN1...

edidest(testdun1) account(ieacct1) userid(ieuser1);
edidest(testdun2) account(ieacct2) userid(ieuserI2);
edidest(5551212) account(ieacct3) userid(userid3);
90

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Example of sending EDI data with qualifier table
Following is an example of sending X12 data using a qualifier table.

Figure 4. Sending an X12 file with an EDI qualifier table

In this example, X12 data is sent to receiver ID testdun1 with receiver ID qualifier 01.
Expedite looks for qualtbl.tbl in the subdirectory named SHARED under the Expedite
install directory.

Expedite searches the EDI qualifier table for a datatype of x and qualifier of 01. This
entry indicates that ttableaa.tbl should be used to convert the EDI destination to a
proper Information Exchange address.

Expedite proceeds to search ttableaa.tbl for the receiver ID testdun1 and converts the
address in the Information Exchange account ID ieacct1 to Information Exchange
user ID ieuser1.

ISA....01....TESTDUN1...

datatype(x) qualifier(01) alias(GX01) ttable(ttableaa.tbl);
datatype(x) qualifier(02) alias(GX02);
datatype(e) qualifier(01) alias(GE01) ttable(ttablebb.tbl);

edidest(testdun1) account(ieacct1) userid(ieuser1);
edidest(testdun2) account(ieacct2) userid(ieuser2);

qualtbl.tbl

ttableaa.tbl
91

Software Development Kit Programming Guide
Using centralized Information Exchange alias tables
You may find it time consuming to maintain EDI destination tables in multiple
locations. You can use centralized Information Exchange alias tables for more conve-
nience.

These permanent tables reside within Information Exchange and are used to convert
EDI destinations into Information Exchange destinations. You can make them
available to all Information Exchange users (global alias tables), members of a
particular account ID (organization alias tables), or individual users (private alias
tables).

The EDI qualifier table and the EDI destination table determine which, if any, of these
alias tables Expedite should use.

You can create and maintain alias tables by using Information Exchange Adminis-
tration Services. For more information, see the Information Exchange Administration
Services User’s Guide.

Sending EDI data with a centralized alias table
To send EDI data to a destination defined in an Information Exchange centralized
alias table, follow these steps:

1. Add the target EDI destination to an Information Exchange centralized alias
table.

2. Build an EDI qualifier table that contains the name of the Information Exchange
centralized alias table and specifies the EDI data type.

3. If you are not using a default EDI destination table file name, build an EDI
qualifier table that contains the name of your EDI destination table and the type
of EDI data it references.

4. Use the Send order to send the file containing your EDI data.

NOTE: Expedite includes a sample qualifier table that defines standard
centralized alias tables for all types of EDI data. In some Information
Exchange installations (in the United States), these standard, centralized
alias tables already exist, and you can add your EDI destinations to these
tables to resolve your destinations.
92

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Example of sending EDI data with centralized alias table
The following example shows the tables Expedite uses to send an X12 file to a trading
partner with an EDI destination of testsca1 and a qualifier of 02. This particular
example does not include an EDI destination table.

Figure 5. Sending an X12 file with an Information Exchange centralized alias table

Expedite sends the data in this example to alias name testsca1 in Information
Exchange alias table GX02. Information Exchange alias table GX02 is used to
resolve the alias to an Information Exchange account ID and user ID.

Using Information Exchange distribution lists
To send EDI data to an Information Exchange distribution list:

1. Define the Information Exchange list.

You can define a list using Information Exchange Administration Services.

2. Build an EDI destination table containing your EDI destination and the corre-
sponding Information Exchange list name.

3. If you are not using a default EDI destination table file name, build an EDI
qualifier table that contains the name of your EDI destination table and the type
of EDI data it references.

4. Use the Send order to send the file containing your EDI data.

ISA.....02.....TESTCA1...

datatype(x) qualifier(01) alias(gx01) ttable(ttable01.tbl);
datatype(x) qualifier(02) alias(gx02);
datatype(e) qualifier(01) alias(ge01) ttable(ttable01.tbl);

qualtbl.tbl
93

Software Development Kit Programming Guide
Example of sending EDI data to a distribution list
The following example shows the tables Expedite uses to send an EDIFACT file to an
Information Exchange distribution list named list01.

Figure 6. Sending an EDIFACT file to an Information Exchange distribution list

Expedite sends the data in this example to the Information Exchange list name list01.

Use Information Exchange Administration Services to create a permanent list. For
more information, see the Information Exchange Administration Services User’s
Guide.

UNB....01....TESTDUN3...

datatype(x) qualifier(01) alias(GX01) ttable(ttableaa.tbl);
datatype(x) qualifier(02) alias(GX02);
datatype(e) qualifier(01) alias(GE01) ttable(ttablebb.tbl);

edidest(testdun1) account(ieacct1) userid(ieuser1);
edidest(testdun2) account(ieacct2) userid(ieuser2);

qualtbl.tbl

ttablebb.tbl

edidest(testdun3) listname(list01);
94

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Specifying Information Exchange control fields
Information Exchange control fields allow you to assign information, which can be
used by you and your trading partner, to the files you send. You can specify these
control fields by specifying those values on the Send order.

Following are the Information Exchange control fields you can use on the
ExpAddSendOrdrStruct and ExpDoSendOrdrStruct structures:

■ MsgName

An alphanumeric identifier for your file.

■ MsgSeqNo

A numeric identifier for your file.

■ MsgClass

An alphanumeric identifier for your file. The user class can be used by your
trading partner when receiving the file.

Providing a message name
When you use the Send order and provide a message name parameter, Expedite uses
this value for the Information Exchange message name. If you do not provide a
message name parameter, Expedite generates the Information Exchange message
name based on the EDI data type. The following table describes how Expedite
generates the message name.

This EDI data type: Generates this message name:

EDIFACT data Expedite takes the message name from the data element
0020 (Interchange Control Reference) of the EDI data. If
the element exceeds 8 bytes in length, Expedite uses the
first 8 bytes. If the element is fewer than 8 bytes in
length, Expedite places it in the message name field, left-
justified and padded with blanks.

UN/TDI data Expedite takes the message name from the sender’s
reference field (SNRF) of the EDI data. If the SNRF
exceeds 8 bytes in length, Expedite uses the first 8 bytes.
If the SNRF is fewer than 8 bytes in length, Expedite
places it in the message name field, left-justified and
padded with blanks.
95

Software Development Kit Programming Guide
Providing a message sequence number
When you use the Send order and provide a message sequence number, Expedite uses
this value for the Information Exchange message sequence number. If you do not
provide the message sequence number, the Send order generates an Information
Exchange message sequence number in the following manner for all EDI data types:

■ Expedite counts each EDI envelope it transmits from a single data file.

■ Expedite formats the message sequence number as a series of numeric characters
ranging from 00001 to 99999.

■ Expedite assigns and places the count of each EDI envelope in the message
sequence number of the corresponding Information Exchange messages.

For example, three EDI envelopes Expedite sent from a single file would have
the following message sequence number values:

• 00001 for the first EDI envelope in the file

• 00002 for the second EDI envelope in the file

• 00003 for the last EDI envelope in the file

When the message sequence number reaches 99999, it automatically resets to 00001.
The message sequence number counter also resets to 00001 each time you use the
Send order for a new file of EDI envelopes.

X12 data Expedite takes the message name from the last 8 bytes of
the interchange control number of the X12 data.

UCS data Expedite takes the message name from the interchange
control number. Because the UCS interchange control
number has a maximum length of 5 bytes, Expedite
places the interchange control number in the message
name field, left-justified and padded with blanks.

This EDI data type: Generates this message name:
96

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Providing a user class
If you do not provide a user class parameter on the Send order, Expedite generates a
parameter value based on the EDI data type.

User class for EDIFACT and UN/TDI data
For EDIFACT and UN/TDI data, Expedite takes the user class from the application
reference field (APRF) of the EDI data. If the APRF exceeds 8 bytes in length,
Expedite uses the first 8 bytes. If the APRF is fewer than 8 bytes in length, Expedite
places the APRF in the user class field, left-justified and padded with blanks. If the
APRF is not present, Expedite sets the user class as follows:

User class for X12 and UCS data
For X12 and UCS data, if you do not specify a user class, Expedite sets the class as
follows:

Inserting blanks following EDI segments
If you insert blanks at the end of EDI segments when preparing EDI information,
Expedite does not consider the blanks part of the EDI data. Expedite accepts EDI data
with blanks after the segment terminators, but it removes these blanks before trans-
mitting the data to Information Exchange.

Using Expedite order receipts
For every file sent, Expedite records a send receipt. For EDI data, each envelope is
considered a file. If there is more than one envelope in a file, Expedite writes one
receipt for each envelope, adding a sequence number to differentiate between the
receipts produced for the same order.

This EDI data type: Defaults to this class:

EDIFACT #EE

UN/TDI #EU

This EDI data type: Defaults to this class:

UCS data #EC

X12 data #E2
97

Software Development Kit Programming Guide
The send order receipts keep track of the EDI envelopes that Expedite sent. These
receipts also include a Verify field that indicates whether or not Expedite sent the EDI
envelope.

The field provides a record of the EDI envelopes not sent by the Send order because
of a destination verification failure, if you specified that Expedite should continue
processing a file with multiple EDI envelopes when a destination verification fails.
(Verify or Verify if possible with the On error field set to Continue.)

Verification is specified in the ExpDoSendOrdrStruct structure Verify field, with
values Y or F for Always verify or Verify if possible, respectively. The continue
processing value is specified in the EdiVerifyProc field as C for continue and S for
stop.

Receiving EDI data
You use the Expedite Receive order to receive EDI data from Information Exchange
by specifying Y in the Receiveedi field in the ExpDoRecvOrdrStruct or
ExpAddRecvOrdrStruct structure to receive as EDI data.

When you indicate the data to be received is EDI, Expedite parses the header and
includes that information in the receipt. You can also tell Expedite to do special
formatting on the data.

Specifying automatic EDI processing
Expedite provides an automatic EDI processing option. If you specify Receiveedi as
N or leave it blank, and the data is marked as EDI in the CDH, Expedite processes the
data as EDI. This way you can receive both EDI and non-EDI data with the same
order and have the EDI data processed appropriately. You can also indicate that
Expedite should ignore the CDH and process the data as EDI.

Use the Autoedi field on the ExpDoRecvOrdrStruct or ExpAddRecvOrdrStruct
structure and specify Y, N, or F for process as EDI, receive as-is, or ignore CDH and
process as EDI.

NOTE: You can use the receipts to determine which EDI envelopes have
been sent when the Send order does not compete successfully.
98

Chapter 7. Sending and receiving EDI data with Expedite for Windows
Specifying CRLF characters
If you specify EDI processing, Expedite checks the processing option to see where to
break the EDI records with carriage-return line-feed (CRLF) characters: after
segment delimiters, nowhere, or after a fixed number of characters in the EDI data.

Use the Ediopt field on the ExpDoRecvOrdrStruct or ExpAddRecvOrdrStruct
structure to specify one of the following:

■ Y to add CRLF characters after segment delimiters

■ N to indicate that no CRLF characters should be added

■ B to indicate CRLF characters should be added after a fixed number of bytes

If you specify B, indicate the number of characters in the Recordsize field.

Specifying only EDI data to be received
You can tell Expedite to receive only data that is marked as EDI data in the CDH. To
do this, specify Y on the EdiOnly field in the ExpDoRecvOrdrStruct or ExpAd-
dRecvOrdrStruct structure.

This method is especially useful if you intend to use a translator to translate from EDI
standard format to proprietary format. Some translators may have problems trying to
translate data that is not really in an EDI format.

If the system sending the EDI data does not support the CDH, there is no way to
guarantee that the data you receive is EDI. However, you can make arrangements
with your trading partner to help ensure that you receive EDI data. For example, you
and your trading partner can agree that all EDI data is sent with a user class of
edidata. All non-EDI data must have a different user class. That way, if your EDI
receive order receives from user class edidata, the data should be EDI.

This method does not guarantee that the data in the file is EDI; for example, your
trading partner may mistakenly send a non-EDI file to your mailbox with a user class
of edidata. However, this method does improve the chances that the data is really
EDI.

If the trading partner sending you data uses the default user classes of the Send order,
you can use the wildcard receive feature of Information Exchange to simplify receipt.
For example, by specifying #E? as the user class on the Expedite order, you can ask
Information Exchange to return only files that have a user class beginning with #E.
This includes all files sent with the default EDI user classes.
99

Software Development Kit Programming Guide
If there is no CDH, Expedite attempts to process the files as EDI data. If this is not
possible, the program writes the data without reformatting.

Creating tables for destination resolution
The following sections provide information on the format of the EDI qualifier table
and EDI destination table. When you are sending data, these tables enable Expedite to
resolve destinations. Use these formats to create your tables.

Understanding the EDI qualifier table entry format
The file qualtbl.tbl. contains the EDI qualifier table. Each entry in this table indicates
an EDI destination table, or a centralized alias table, or both, for a given EDI qualifier
or EDI data type.

The format for an EDI qualifier table entry is:

datatype
The EDI data type. Use one of the following values:

• blank - all EDI data types

• X - X.12 data

• C - UCS data

• E - EDIFACT data

• U - UN/TDI data

qualifier
The EDI qualifier. If the qualifier parameter is blank, this entry matches any EDI
qualifier. Use 1 to 4 alphanumeric characters. The default is blank.

NOTE: The Send order places a single EDI envelope in an Information
Exchange file. The Expedite order expects each EDI envelope to be
contained in a separate Information Exchange file. If you put multiple EDI
envelopes in a single file and send them without specifying SendEdi as Y,
the entire file is sent to the Information Exchange account ID and user ID
specified on the Send order regardless of the destinations specified in the
EDI envelopes within the file.
100

Chapter 7. Sending and receiving EDI data with Expedite for Windows
ttable
The name of the EDI destination table. If you specify this parameter, Expedite
uses that table to try to resolve the Information Exchange destination. If you do
not specify a destination table, Expedite does not use a table to match EDI data
and resolve the destination. Use a standard file name, 1 to 12 alphanumeric
characters.

alias
The name of the centralized alias table. If you specify this parameter and
Expedite does not find the destination in the EDI destination table, Expedite uses
this alias table with the EDI receiver ID as the alias name. Use one of the
following values:

• blank for a centralized alias table. This is the default.

• gxxx for a global alias table, where xxx identifies a 1- to 3-character table
name.

• oxxx for an organizational alias table, where xxx identifies a 1- to 3-character
table name.

• pxxx for a private alias table, where xxx identifies a 1- to 3-character table
name.

You can include comments in the qualifier table by specifying # as the first character
on the line.

Example of a qualifier table entry
The following is an example of a qualifier table entry.

Destination table for southeast area trading partners

datatype(x) qualifier(01) ttable(ttable01.tbl alias(gx01);
101

Software Development Kit Programming Guide
Understanding the EDI destination table entry format
Use the TTABLE parameter in the EDI qualifier to specify the name of your EDI
destination table. Each entry in this table indicates the Information Exchange desti-
nation associated with a given EDI receiver ID.

The format of an EDI destination table entry is:

edidest(EDI destination)
alias(alias) aliasname(alias name);
or
sysid(systemID) account(account) userid(user ID);
or
account(account ID) userid(user ID);
or listname(list name);

edidest
The EDI receiver ID. If this parameter matches the receiver ID from the EDI
data, Expedite sends the message to the Information Exchange destination using
the parameters you select. Use 1 to 35 alphanumeric characters.

alias
The alias table type and table name.

aliasname
An alias name defined in the alias table. Use 1 to 16 alphanumeric characters.

sysid
The system ID of a single-destination user ID. You need this only if the account
ID and user ID you specify reside on another Information Exchange system. Use
this parameter only with the account and userid parameters. Use 1 to 3 alphanu-
meric characters.

account
The Information Exchange account ID name of a single-destination user ID. Use
1 to 8 alphanumeric characters.

userid
The Information Exchange destination user ID. Use 1 to 8 alphanumeric
characters.
102

Chapter 7. Sending and receiving EDI data with Expedite for Windows
listname
The name of a previously defined list of account IDs and user IDs. Use 1 to 8
alphanumeric characters.

You can include comments in the destination table.

Example of an EDI destination table entry
The following is an example of an EDI destination table entry:

IE address for XYZ company in Pittsburgh
edidest(testdun1) account(ieacct1) userid(ieuser1);
103

Software Development Kit Programming Guide
104

© Copyright GXS, Inc. 1998, 2005
Appendix A
.
Code examples

The following scenarios and code examples illustrate how companies can use
Expedite for Windows. These examples may help you implement this application in
your company.

Scenario 1
Company A is an insurance agency that sells policies and processes claims. At the
end of each business day, Company A runs an application program to collect infor-
mation about the day’s transactions and prepare the information for transmission to
the home office.

The program writes all claim information to the file claims.fil and writes all policy
information to the file policy.fil. Every night the company sends these two files to the
home office, and the home office sends the agency updated claim information in the
file update.fil.

Company A needs to do the following:

1. Create a dropoff box with the recovery level set to checkpoint level and
automated recovery set to cancel. Process an error if one occurs:

 struct ExpAddDropBoxReqStruct aReq;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddDropBoxReqStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.DropBoxName,"Dropbox");
 ExpAddField(aReq.IeMboxIdName,"account userid");
105

Software Development Kit Programming Guide
 ExpAddField(aReq.DropRecovery,"C");
 ExpAddField(aReq.SessRecovery,"C");

 rc = ExpAddDropBox(&aReq,NULL);

 /* Process error if one occurred.*/
 if (rc != 0)
 {
 struct ErrorTextRspStruct ErrRsp;
 ExpResetMem((char*)&ErrRsp,sizeof(struct ErrTextRspStruct));
 ExpErrorExplanation(&ErrRsp);
 }

2. Create a send order to send the claims file:

 struct ExpAddSendOrdrReqStruct aReq;
 struct ExpSendOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddSendOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpSendOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Claims");
 ExpAddField(aReq.IeMboxId,"account userid");
 ExpAddField(aReq.Fileid,"c:\\data\\claims.fil");

 rc = ExpAddSendOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

3. Create a send order to send the policies file:

 struct ExpAddSendOrdrReqStruct aReq;
 struct ExpSendOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddSendOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpSendOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Policies");
 ExpAddField(aReq.IeMboxId,"account userid");
 ExpAddField(aReq.Fileid,"c:\\data\\policies.fil");

 rc = ExpAddSendOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/
106

Appendix A. Code examples
4. Create a receive order to receive the updates file:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Updates");
 ExpAddField(aReq.IeMboxId,"account userid");
 ExpAddField(aReq.Fileid,"c:\\data\\update.fil");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

5. Create a receive order to receive the error messages:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Errors");
 ExpAddField(aReq.IeMboxId,"*SYSTEM**ERRMSG*");
 ExpAddField(aReq.Fileid,"c:\\data\\errors.fil");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

6. Assign the send orders to the dropoff box:

 struct ExpAsgSendOrdrToDropBoxReqStruct aReq;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAsgSendOrdrToDropBoxReqStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.DropBoxName,"Dropbox");
 ExpAddField(aReq.OrdrName,"Claims");

 rc = ExpAsgSendOrdrToDropBox(&aReq);
107

Software Development Kit Programming Guide
7. Assign the receive orders to the dropoff box:

 struct ExpAsgRecvOrdrToDropBoxReqStruct aReq;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAsgRecvOrdrToDropBoxReqStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.DropBoxName,"Dropbox");
 ExpAddField(aReq.OrdrName,"Updates");

 rc = ExpAsgRecvOrdrToDropBox(&aReq);

8. Process the dropoff box and check the session receipt. Print the error text if there
was an error:

 struct ExpProcDropBoxReqStruct aReq;
 struct ExpDropBoxProcRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpProcDropBoxReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpDropBoxProcRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.DropBoxName,"Dropbox");

 rc = ExpProcDropBox(&aReq,&aRsp);
 /* Process error if one occurred.*/

 printf("Session receipt:\n");
 printf("Session receipt name: %20.20s\n",aRsp.SrcptName);
 printf("Dropoff box name: %20.20s\n",aRsp.DropBoxName);
 printf("Start date: %14.14s\n",aRsp.StartDate);
 printf("End date: %14.14s\n",aRsp.EndDate);
 printf("Session key: %8.8s\n",aRsp.Sesskey);
 printf("Ieversion: %2.2s\n",aRsp.Ieversion);
 printf("Last session: %5.5s\n",aRsp.LastSess);
 printf("IE response code: %5.5s\n",aRsp.Ierespcode);
108

Appendix A. Code examples
 /* If there was an error, load the error response structure and print
 * the error text.
 */
 if (rc != 0)
 {
 struct ErrorTextRspStruct ErrRsp;
 ExpResetMem((char*)&ErrRsp,sizeof(struct ErrTextRspStruct));
 ExpErrorExplanation(&ErrRsp);

 printf("Error # = %s\n",ErrRsp.ReasonCode);
 printf("Error = %s\n",ErrRsp.ErrorMsg);
 printf("Explanation = %s\n",ErrRsp.ErrorTxt);
 printf("Response = %s\n",ErrRsp.Response);
 }
109

Software Development Kit Programming Guide
Scenario 2
Company B is an engineering firm that sends files containing CAD/CAM drawings,
which are in a special data format that must be treated like binary data. Company B
enters functions to send the file cadcam.fil to account abcd and user ID engin1 with
the message class of drawing. Using the DataType field, Company B indicates that
Expedite for Windows should treat the data in this file as binary data (B), which does
not get translated to EBCDIC when it is sent to Information Exchange.

In addition to the cadcam.fil file, Company B is also sending the e-mail file email.fil
to the same user. The value Y in the Format field tells Expedite for Windows to send
the file to Information Exchange with a message class of FFMSG001. The program
stores the e-mail messages in email.fil.

Company B needs to do the following:

1. Create a send order to send CAD/CAM files as binary data:

 struct ExpAddSendOrdrReqStruct aReq;
 struct ExpSendOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddSendOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpSendOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"CadCam");
 ExpAddField(aReq.IeMboxId,"abcd engin1");
 ExpAddField(aReq.Fileid,"c:\\data\\cadcam.fil");
 ExpAddField(aReq.Datatype,"B");
 ExpAddField(aReq.MsgClass,"drawing");

 rc = ExpAddSendOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

2. Create a send order to send an e-mail file:

 struct ExpAddSendOrdrReqStruct aReq;
 struct ExpSendOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddSendOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpSendOrdrAddedRspStruct));
110

Appendix A. Code examples
 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Email");
 ExpAddField(aReq.IeMboxId,"abcd engin1");
 ExpAddField(aReq.Fileid,"c:\\data\\email.fil");
 ExpAddField(aReq.Format,"Y");

 rc = ExpAddSendOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/
111

Software Development Kit Programming Guide
Scenario 3
Company C is a manufacturer that sells parts to hardware stores. Each day Company
C receives orders from hardware stores electronically. All parts orders in the company
mailbox have a user class of parts. It receives these order files into one file so a clerk
can enter the information in the order entry system.

Company C also receives company profiles from new hardware stores. All of these
files have the user class profile. When Company C receives more than one profile, it
receives each profile into separate files.
Company C needs to do the following:

1. Create a receive order to receive all parts orders to one file:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Parts");
 ExpAddField(aReq.IeMboxId,"account userid");
 ExpAddField(aReq.Fileid,"c:\\data\\parts.fil");
 ExpAddField(aReq.MsgClass,"parts");
 ExpAddField(aReq.Multfiles,"N");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

2. Create a receive order to receive and store in the Information Exchange archive
file:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Archive");
 ExpAddField(aReq.Fileid,"c:\\data\\archive.fil");
 ExpAddField(aReq.Archiveid,"archivenum");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/
112

Appendix A. Code examples
3. Create a receive order to receive company profiles:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Profiles");
 ExpAddField(aReq.Fileid,"c:\\data\\profile.fil");
 ExpAddField(aReq.MsgClass,""profile");
 ExpAddField(aReq.Multfiles,"Y");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/
113

Software Development Kit Programming Guide
Scenario 4
Company D is a parts manufacturer that receives its software from a vendor. The
vendor is responsible for setting up the company’s PCs, installing all software, and
providing code updates.

The vendor sends the code update file updates.fil to the company’s Information
Exchange mailbox, and Company D receives the file using the OrigFile field. This
field tells Expedite for Windows to receive the updates in a file using the file name
from the sending system.

The original file name from the sending system is in the CDH. Therefore, both the
vendor and Company D must be using versions of the Expedite for Windows products
that support the CDH.

Company D needs to do the following to create a Receive order to receive updates
with their original filename:

 struct ExpAddRecvOrdrReqStruct aReq;
 struct ExpRecvOrdrAddedRspStruct aRsp;
 int rc = 0;

 ExpResetMem((char*)&aReq,sizeof(struct ExpAddRecvOrdrReqStruct));
 ExpResetMem((char*)&aRsp,sizeof(struct ExpRecvOrdrAddedRspStruct));

 ExpAddField(aReq.ProjName,"Project");
 ExpAddField(aReq.OrdrName,"Updates");
 ExpAddField(aReq.Fileid,"c:\\data\\updates.fil");
 ExpAddField(aReq.Origfile,"Y");

 rc = ExpAddRecvOrdr(&aReq,&aRsp);
 /* Process error if one occurred.*/

NOTE: When Company D uses the OrigFile field, it must use the FileId
field in case the file does not have a CDH.
114

Appendix A. Code examples
Scenario 5
Company E needs to list all the addresses and nicknames in the address book.
Because there are many addresses in the database, the addresses must be retrieved a
few at a time.

Company E needs to do the following to list multiple addresses:

 #define MAX_LIST 15;

 struct ExpListReqStruct aListReq;
 struct ExpAddrListedRspStruct aListRsp [MAX_LIST];
 unsigned short NumRead = 0;
 int rc = 0;
 int index = 1;
 char indexStr [10];
 char numEntStr [10];

 sprintf(indexStr,"%d",index);
 sprintf(numEntStr,"%d",MAX_LIST);

 ExpResetMem((char*)&aListReq,sizeof(struct ExpListReqStruct));
 ExpResetMem((char*)&aListRsp,(MAX_LIST *
 sizeof(struct ExpAddrListedRspStruct)));
 ExpAddField(aListReq.ProjName,"Project");
 ExpAddField(aListReq.NumEntries,numEntStr);
 ExpAddField(aListReq.StartIndex,indexStr);

 do
 {
 rc = ExpListAddr(&aListReq,&NumRead,aListRsp);
 /* Process error if one occurred.*/
 if (rc == 0)
 {
 int i;
 for(i=0;i<NumRead;i++)
 {
 char nick›EXP_MAXLEN_AD_NICKNAME+1|;
 memset(nick,'\0',(EXP_MAXLEN_AD_NICKNAME+1));
 memcpy(nick,aListRsp[i].Nickname,EXP_MAXLEN_AD_NICKNAME);
 printf("Address nickname #%d: %s\n",(index + i),nick);
 }
 }
 index += NumRead;
 sprintf(indexStr,"%d",index);
 ExpReplaceField(aListReq.StartIndex,EXP_MAXLEN_START_INDEX,indexStr);
 }
 while ((NumRead >= MAX_LIST) && (rc == 0));
115

Software Development Kit Programming Guide
Scenario 6
Company F needs to list all the orders on the order shelf. Because the order shelf
contains a variety of order types, the type must be defined before processing.

Company F needs to do the following to list multiple types of objects:

 /* List all orders on the order shelf.*/
 struct ExpListReqStruct aListReq;
 struct ExpSendOrdrListedRspStruct *aSendOrdr;
 struct ExpRecvOrdrListedRspStruct *aRecvOrdr;
 char ordrname [130+1];
 char type[EXP_MAXLEN_DR_ORDR_TYPE + 1];
 char *aListRsp;
 unsigned short NumRead = 0;
 int rc = 0;
 int ordptr = 0;

 aListRsp = (char *)malloc(MAX_LIST *
 sizeof(struct ExpRecvOrdrListedRspStruct));

 ExpResetMem((char*)&aListReq,sizeof(struct ExpListReqStruct));
 ExpResetMem(aListRsp,(MAX_LIST *
 sizeof(struct ExpRecvOrdrListedRspStruct)));

 ExpAddField(aListReq.ProjName,"Project");

 printf("ExListOrdersOnOrdrShlf = \n");
 rc = ExpListOrdrsOnOrdrShlf(&aListReq,&NumRead,aListRsp);
 printf("Number of Orders on the order shelf is: %d\n",NumRead);
 /* Process error if one occurred.*/
 if (rc == 0)
 {
 int i;
 if (NumRead != 0)
 printf("Here are the order names and types: \n");
 for(i=0;i<NumRead;i++)
 {
 memset(ordrname,'\0',(130+1));
 memset(type,'\0',(EXP_MAXLEN_DR_ORDR_TYPE+1));

 switch(aListRsp[ordptr])
 {
 case EXP_SEND_ORDR_TYPE:
 {

116

Appendix A. Code examples
 aSendOrdr = (struct ExpSendOrdrListedRspStruct *)
 &aListRsp[ordptr];
 memcpy(ordrname,aSendOrdr->OrdrName,EXP_MAXLEN_SN_ORDR_NAME) ;
 memcpy(type,aSendOrdr->Type,EXP_MAXLEN_DR_ORDR_TYPE);
 printf("Order #%d Type :%s: Order Name :%s:\n",(i+1),
 type,ordrname);
 ordptr += sizeof(struct ExpSendOrdrListedRspStruct);
 }
 break;
 case EXP_RECV_ORDR_TYPE:
 {
 aRecvOrdr = (struct ExpRecvOrdrListedRspStruct *)
 &aListRsp[ordptr];
 memcpy(ordrname,aRecvOrdr->OrdrName,EXP_MAXLEN_RV_ORDR_NAME);
 memcpy(type,aRecvOrdr->Type,EXP_MAXLEN_DR_ORDR_TYPE);
 printf("Order #%d Type :%s: Order Name :%s:\n",(i+1),
 type,ordrname);
 ordptr += sizeof(struct ExpRecvOrdrListedRspStruct);
 }
 break;
 default:
 exit(0);
 }
 }
 }
117

Software Development Kit Programming Guide
Scenario 7
Company G needs to send a file using Express priority to their CICS-based host doing
continuous receiving with Information Exchange. The sender requires an immediate
response. If a response is not returned within six minutes and the classification is
“urgent,” the request is forwarded to another mailbox to be picked up and processed
later.
Company G needs to do the following using interactive sessions:
 ...
 struct ExpStartSessReqStruct aSSReq;
 struct ExpSessStartedRspStruct aSSRsp;
 struct ExpDoSendOrdrReqStruct aDSOReq;
 struct ExpSendOrdrDoneRspStruct aSODRsp;
 struct ExpDoRecvOrdrReqStruct aDROReq;
 struct ExpRecvOrdrDoneRspStruct aRODRsp;
 struct ExpEndSessReqStruct aESReq;
 struct ExpSessEndedRspStruct aSERsp;
 int rc = 0;

 /* Start session call establishes an interactive session */
 ExpResetMem((char*)&aSSReq,sizeof(struct ExpStartSessReqStruct));
 ExpResetMem((char*)&aSSRsp,sizeof(struct ExpSessStartedRspStruct));
 ExpAddField(aSSReq.ProjName,theProjectName);
 rc = ExpStartSess(&aSSReq, &aSSRsp);
 if (rc)
 /* Error Handling */

 /* Send order with Express priority */
 ExpResetMem((char*)&aDSOReq,sizeof(struct ExpDoSendOrdrReqStruct));
 ExpResetMem((char*)&aSODRsp,sizeof(struct ExpSendOrdrDoneRspStruct));
 ExpAddField(aDSOReq.ProjName,theProjectName);
 ExpAddField(aDSOReq.IeMboxId,"ATAP IETESTB");
 ExpAddField(aDSOReq.Fileid,"d:\\temp\\testfile.snd");
 ExpAddField(aDSOReq.Verify,"N");
 ExpAddField(aDSOReq.Charge,"3");
 ExpAddField(aDSOReq.Ack,"N");
 ExpAddField(aDSOReq.Retention,"0");
 ExpAddField(aDSOReq.Priority,"X");
 ExpAddField(aDSOReq.Datatype,"T");
 ExpAddField(aDSOReq.Format,"N");
 rc = ExpDoSendOrdr(&aDSOReq, &aSODRsp);
 if (rc)
 /* Error Handling */
118

Appendix A. Code examples
 /* Issue Receive order to get immediate response with maximum */
 /* wait time for 5 minutes */
 ExpResetMem((char*)&aDROReq,sizeof(struct ExpDoRecvOrdrReqStruct));
 ExpResetMem((char*)&aRODRsp,sizeof(struct ExpRecvOrdrDoneRspStruct));
 ExpAddField(aDROReq.ProjName,theProjectName);
 ExpAddField(aDROReq.IeMboxId,"ATAP IETESTB");
 ExpAddField(aDROReq.Fileid,"d:\\temp\\testfile.rcv");
 ExpAddField(aDROReq.Allfiles,"N");
 ExpAddField(aDROReq.Multfiles,"Y");
 ExpAddField(aDROReq.Origfile,"N");
 ExpAddField(aDROReq.Waittime,"5");
 rc = ExpDoRecvOrdr(&aDROReq, &aRODRsp);
 if (rc)
 /* Error Handling */

 /* After 5 minutes, if the receive receipt shows 0 files received, */
 /* send order to another mailbox. */
 if (atoi(aRODRsp.FilesRcvd) == 0)
 {
 ...
 ExpReplaceField(aDSOReq.IeMboxId,EXP_MAXLEN_DS_IE_MBOX_ID,
 "ATAP IETESTA");
 ...
 ExpReplaceField(aDSOReq.Priority,EXP_MAXLEN_DS_PRIORITY,"N");
 rc = ExpDoSendOrdr(&aDSOReq, &aSODRsp);
 if (rc)
 /* Error Handling */
 }

 /* End the intereactive session */
 ExpResetMem((char*)&aESReq,sizeof(struct ExpEndSessReqStruct));
 ExpResetMem((char*)&aSERsp,sizeof(struct ExpSessEndedRspStruct));
 ExpAddField(aESReq.ProjName,theProjectName);
 rc = ExpEndSess(&aESReq, &aSERsp);
 if (rc)
 /* Error Handling */
119

Software Development Kit Programming Guide
Scenario 8
Company H needs to send files to a trading partner and receive files from
headquarters. If the headquarters’ files are received, they need to be forwarded to
another application for processing. When that application completes processing, the
files need to be forwarded to another Information Exchange mailbox for a different
company’s use.
Company H needs to do the following, using interactive sessions:
 ...
 struct ExpStartSessReqStruct aSSReq;
 struct ExpSessStartedRspStruct aSSRsp;
 struct ExpDoSendOrdrReqStruct aDSOReq;
 struct ExpSendOrdrDoneRspStruct aSODRsp;
 struct ExpDoRecvOrdrReqStruct aDROReq;
 struct ExpRecvOrdrDoneRspStruct aRODRsp;
 struct ExpEndSessReqStruct aESReq;
 struct ExpSessEndedRspStruct aSERsp;
 int rc = 0;

 /* Start session call establishes an interactive session */
 ExpResetMem((char*)&aSSReq,sizeof(struct ExpStartSessReqStruct));
 ExpResetMem((char*)&aSSRsp,sizeof(struct ExpSessStartedRspStruct));
 ExpAddField(aSSReq.ProjName,theProjectName);
 rc = ExpStartSess(&aSSReq, &aSSRsp);
 if (rc)
 /* Error Handling */

 /* Issue send order for testfile.snd*/
 ExpResetMem((char*)&aDSOReq,sizeof(struct ExpDoSendOrdrReqStruct));
 ExpResetMem((char*)&aSODRsp,sizeof(struct ExpSendOrdrDoneRspStruct));
 ExpAddField(aDSOReq.ProjName,theProjectName);
 ExpAddField(aDSOReq.IeMboxId,"ATAP IETESTB");
 ExpAddField(aDSOReq.Fileid,"d:\\temp\\testfile.snd");
 ExpAddField(aDSOReq.Verify,"N");
 ExpAddField(aDSOReq.Charge,"3");
 ExpAddField(aDSOReq.Ack,"N");
 ExpAddField(aDSOReq.Retention,"0");
 ExpAddField(aDSOReq.Priority,"X");
 ExpAddField(aDSOReq.Datatype,"T");
 ExpAddField(aDSOReq.Format,"N");
 rc = ExpDoSendOrdr(&aDSOReq, &aSODRsp);
 if (rc)
 /* Error Handling */
 ...
 /* Issue send order for next file */
 ExpReplaceField(aDSOReq.Fileid,"d:\\temp\\nextfile.snd");
 rc = ExpDoSendOrdr(&aDSOReq, &aSODRsp);
 if (rc)
 /* Error Handling */
 ...
120

Appendix A. Code examples
 /* Issue receive order to receive file from headquarter */
 ExpResetMem((char*)&aDROReq,sizeof(struct ExpDoRecvOrdrReqStruct));
 ExpResetMem((char*)&aRODRsp,sizeof(struct ExpRecvOrdrDoneRspStruct));
 ExpAddField(aDROReq.ProjName,theProjectName);
 ExpAddField(aDROReq.IeMboxId,"ATAP IETESTB");
 ExpAddField(aDROReq.Fileid,"d:\\temp\\testfile.rcv");
 ExpAddField(aDROReq.Allfiles,"N");
 ExpAddField(aDROReq.Multfiles,"Y");
 ExpAddField(aDROReq.Origfile,"N");
 rc = ExpDoRecvOrdr(&aDROReq, &aRODRsp);
 if (rc)
 /* Error Handling */
 ...

 /* Issue receive order for next file */
 ExpReplaceField(aDROReq.Fileid,"d:\\temp\\nextfile.rcv");
 rc = ExpDoRecvOrdr(&aDROReq, &aRODRsp);
 if (rc)
 /* Error Handling */
 ...

 /* Forward file to another application for processing. */
 ...

 /* When processing is complete, forward to Information Exchange */
 /* mailbox for another company to use */
 ExpResetMem((char*)&aDSOReq,sizeof(struct ExpDoSendOrdrReqStruct));
 ExpResetMem((char*)&aSODRsp,sizeof(struct ExpSendOrdrDoneRspStruct));
 ExpAddField(aDSOReq.ProjName,theProjectName);
 ExpAddField(aDSOReq.IeMboxId,"ATAP IETESTA");
 ExpAddField(aDSOReq.Fileid,"d:\\temp\\testfile.snd");
 ExpAddField(aDSOReq.Verify,"N");
 ExpAddField(aDSOReq.Charge,"3");
 ExpAddField(aDSOReq.Ack,"N");
 ExpAddField(aDSOReq.Retention,"0");
 ExpAddField(aDSOReq.Priority,"N");
 ExpAddField(aDSOReq.Datatype,"T");
 ExpAddField(aDSOReq.Format,"N");
 rc = ExpDoSendOrdr(&aDSOReq, &aSODRsp);
 if (rc)
 /* Error Handling */

 /* End the interactive session */
 ExpResetMem((char*)&aESReq,sizeof(struct ExpEndSessReqStruct));
 ExpResetMem((char*)&aSERsp,sizeof(struct ExpSessEndedRspStruct));
 ExpAddField(aESReq.ProjName,theProjectName);
 rc = ExpEndSess(&aESReq, &aSERsp);
 if (rc)
 /* Error Handling */
121

Software Development Kit Programming Guide
Scenario 9
Company I wants to display the contents of the Information Exchange mailbox and
allow the user to select items to receive. This example shows how to use the
ExpDoQuryOrdr function and process the results to list the contents of the Infor-
mation Exchange mailbox.

Company I needs to do the following:

 struct ExpListItemsReqStruct aListReq;
 struct ExpQuryOrdrDoneRspStruct aListRsp[MAX_LIST];

 char indexStr[10];
 char numEntStr[10];
 unsigned short NumRead = 0;
 int rc = 0;
 int index = 1;
 int i;
 struct ExpQuryOrdrDoneRspStruct* msg;

 sprintf(indexStr, “%d”, index);
 sprintf(numEntStr, “%d”, MAX_LIST);

 ExpResetMem((char*)&aListReq,
 sizeof(struct ExpListItemsReqStruct));
 ExpResetMem((char*)&aListRsp,
 MAX_LIST *
 sizeof(struct ExpQuryOrdrDoneRspStruct)));

 ExpAddField(aListReq.ProjName, theProjectName);
 ExpAddField(aListReq.NumEntries, numEntStr);
 ExpAddField(aListReq.StartIndex, indexStr);

 do
 {
 ExpResetMem((char*)&aListRsp,
 (MAX_LIST *
 sizeof(struct ExpQuryOrdrDoneRspStruct)));
 rc = ExpDoQuryOrdr(&aListReq, &NumRead, aListRsp);
 GetError(“ExpDoQuryOrdr”, rc);
 if (rc == 0)
 {
 for(i=0;i<NumRead;i++)
 {
 msg = &(aListRsp[i]);
 /* display the data */
 ...
 }
 }
122

Appendix A. Code examples
 index += NumRead;
 sprintf(indexStr, “%d”, index);

 ExpReplaceField(aListReq.
 StartIndex,
 EXP_MAXLEN_CF_START_INDEX,
 indexStr);
 }
 while ((NumRead >= MAX_LIST) && (rc == 0));
123

Software Development Kit Programming Guide
124

.
Glossary

A
account. A unique identifier assigned to a
group of users who work for the same company.

account ID. A name that identifies an account
to a program, device, or system.

account profile. Data that describes the
characteristics of a user or group of users.

acknowledgment. A response from Infor-
mation Exchange that confirms whether files
were delivered, received, purged, or any combi-
nation of these actions.

address. (1) A unique code assigned to a user
connected to a network. (2) The location in the
storage of a computer where data is stored.

address book. A repository for trading-partner
information. The address book can contain
nicknames (for Information Exchange
addresses) and trading profiles.

alphanumeric. Pertaining to data that consists
of letters, digits, and usually other characters,
such as punctuation marks.

alias name. An alternate name used in place
of an account and user ID. This is used with an
alias table and alias table type.

alias table. A permanent file list of alternate
names that resides in Information Exchange.

alias table type. A single character access
level indicator used with an alias table name to
identify an alias table. Values are G for global
access, P for owner access, and O for organiza-
tional (account) access.

American National Standard Code for Infor-
mation Interchange (ASCII). The standard
code, using a coded character set consisting of
7-bit coded characters (8 bits including parity
check), used for information interchange among
data processing systems, data communication
systems, and associated equipment. The ASCII
set consists of control characters and graphic
characters.

archive. A place to store messages on a
database for future reference.

ASCII. American National Standard Code for
Information Interchange.
© Copyright GXS, Inc. 1998, 2005 125

Software Development Kit Programming Guide
attribute. A property or characteristic of one
or more entities; for example, length, value,
color, or intensity.

audit trail. Data, in the form of a logical path,
linking a sequence of events used to trace and
verify the transactions that have affected the
contents of a record.

authorization level. The ability to do certain
restricted functions.

API. See application programming interface.

application link. A set of files containing
information that Request Manager uses to
interact with different applications.

application programming interface. A
software interface that enables applications to
communicate with each other. An API is the set
of programming language constructs or state-
ments that can be coded in an application
program to obtain the specific functions and
services provided by an underlying operating
system or service program.

B
binary. Machine instructions that a person
cannot read or enter from a computer keyboard.

C
carriage-return and line-feed characters
(CRLF). A word processing formatting
control that moves the printing or display point
to the first position of the next line.

CDH. Common data header.

centralized alias table. Permanent tables that
reside in Information Exchange and contain a
centralized list of addresses. You can put a list
of your trading partners’ addresses in this table
rather than maintain destination tables in
multiple locations.

A centralized alias table enables Information
Exchange to resolve destinations because it
contains a list of EDI destinations paired with
Information Exchange destinations. Expedite
for Windows searches this table for an EDI
destination and then uses the corresponding
Information Exchange destination as the actual
address.

character. A letter, digit, or other symbol used
as part of the organization, control, or represen-
tation of data.

checkpoint-level recovery. A method of
restart and recovery within Expedite for
Windows. A point where information about the
status of a data transmission can be recovered so
it can be restarted later.

class. In object-oriented design or
programming, a model or template that can be
instantiated to create objects with a common
definition and, therefore, common properties,
operations, and behavior. An object is an
instance of a class.

command. A request from a terminal for the
performance of an operation or the execution of
a particular program.

command line. On a display screen, a display
line on which only instructions to the operating
system can be entered.

commit. The point in a session at which
Expedite and Information Exchange record
checkpoint information, such as number of
126

Glossary
characters and files transmitted so far, and other
information needed to recover a session. A
commit can occur during or after transmitting a
file, depending on the checkpoint-level selected.
Once a file is completely committed, Infor-
mation Exchange will deliver the file to the
recipient if you are sending, or it will purge the
file from your mailbox if you are receiving. If a
session fails, all uncommitted files are discarded,
and the session can be resumed at the last
commit checkpoint.

common data header (CDH). A set of control
information about a file, which is sent to Infor-
mation Exchange by some sending interfaces.
When the file is received by the trading partner,
the receiving interface can use the information in
the CDH.

CRLF. Carriage-return and line-feed
characters.

D
default value. A value assumed when no value
has been specified.

delivery acknowledgment. A confirmation that
Information Exchange generates when a desti-
nation user receives a file from an Information
Exchange mailbox.

delivery class. Specifies how messages and
files are delivered; senders can choose from
high-priority, normal-priority, and express
delivery.

distribution list. A list of the addresses of
users with whom a certain user communicates. It
is used to send messages to several people
without having to type their addresses.

dropoff box. The dropoff box represents an
Information Exchange session. The dropoff box
definition contains information about how
Expedite should conduct the session with Infor-
mation Exchange, such as recovery level,
account and user ID for the mailbox, and your
time zone. Once orders are created, they are
assigned to a dropoff box for processing. The
dropoff box is similar to the input file and the
TRANSMIT and SESSION profile commands in
Expedite Base.

E
EBCDIC. Extended binary-coded decimal
interchange code. A coded character set
consisting of 8-bit coded characters.

EDI. Electronic data interchange.

electronic data interchange (EDI). The
process of sending specially formatted business
documents directly from one computer to
another electronically.

electronic mail (e-mail). Free formatted
messages and formatted file correspondence sent
from one computer to another.

EOF (end of file). A coded character recorded
in a file to indicated the end of the file.

express-priority messages. Messages that are
delivered immediately after they are received by
Information Exchange; the recipient must be
receiving messages to receive an express-priority
message. If the receiver is not receiving
messages, the file is discarded.

extended security option (ESO). An option
that extended security users can specify in their
profiles for stricter password security.
127

Software Development Kit Programming Guide
extended security users. Users with stricter
security requirements, such as levels of
password protection.

F
field. An area of a panel reserved for data of a
certain type or length.

file. A named set of records stored or
processed as a unit.

file-level recovery. A method of restart and
recovery within Expedite for Windows; check-
points are taken for each file sent and received.

G
global alias. An alias name that can be used
by any Information Exchange user.

global alias table. (1) A system-wide alias
table. (2) An alternative name table setup within
a system.

H
high-priority message. Messages that move to
the front of the queue when they are received;
normal-priority messages enter the queue in the
order.

I
Information Exchange. A communication
service that allows users to send and receive
information electronically.

Information Exchange Administration
Services. An online, panel-driven product
that the Information Exchange Service Admin-
istrator uses to perform administrative tasks for
Information Exchange.

Information Exchange Service Adminis-
trator. The person who coordinates the use of
Information Exchange in a company.

J
Java. An object-oriented programming
language for portable interpretive code that
supports interaction among remote objects. Java
was developed and specified by Sun Micro-
systems, Incorporated.

Java Development Kit (JDK). A software
package that can be used to write, compile,
debug, and run Java applets and applications.

L
library. A place to store information for an
extended period of time. A library consists of a
collection of files called library members.

library member. A named collection of
records or statements in a library.

M
mailbox. (1) A database that contains records
that represent orders and receipts for processed
orders.

(1) Any piece of data that users send or receive.
(2) The smallest subdivision of information that
can be sent from one user to another. (3) An
128

Glossary
instruction or explanation on the screen that
describes what the system is doing or warns that
the system has detected an error.

message acknowledgment. A response from
Information Exchange that lets users know
whether their messages were delivered,
received, purged, or various combinations of the
three.

message class. A category, agreed upon by
trading partners, that is used to group mail.

message group. A collection of messages that
is treated as a single entity. A file is an example
of a message group.

message header. The leading part of a message
that contains information, such as the source or
destination code of the message.

method. In object-oriented design or
programming, the software that implements the
behavior specified by an operation.

N
National Institute of Standards and Technology
(NIST). In the United States, this was formerly
the National Bureau of Standards.

non EDI data. Rules defined by NIST to
enable X.400 users to exchange binary files
through the 1984 X.400 InterPersonal
Messaging Services.

O
object. In object-oriented design or
programming, a concrete realization of a class
that consists of data and the operations
associated with that data.

order. An Information Exchange request. The
order object represents the Expedite Base
commands in Expedite for Windows.

order shelf. When you create an order,
Expedite stores the order as part of a set in the
mailbox database, known as the order shelf.

order receipt. Expedite for Windows provides
a confirmation of the results of order processing
that corresponds to a record in the output file of
Expedite.

organizational alias table. An alias table setup
within an account.

P
parameter. (1) A variable that is given a
constant value for a specified application and
that may denote the application. (2) An item in a
menu for which the user specifies a value or for
which the system provides a value when the
menu is interpreted. (3) Data passed between
programs or procedures.

password. A combination of confidential
characters that users enter when they log on, to
prevent unauthorized access of their systems and
data.

permanent distribution list. A distribution list
stored permanently in Information Exchange.

private alias. An alias that can be used only by
the user who created it.

private alias table. An alias table setup for an
individual user.

projects. A naming mechanism that allows
multiple users or applications (one at a time)
access to the same copy of Expedite for
Windows.
129

Software Development Kit Programming Guide
R
receipt acknowledgment. A confirmation
generated by Information Exchange when a file
reaches the receiver’s mailbox after a successful
session.

receipt shelf. When Expedite creates a receipt
for order processing, it stores the receipt as part
of a set in the mailbox database, known as the
receipt shelf.

receiver. The user or users to whose
mailboxes you are sending or retrieving infor-
mation.

receive-side charges. The charges that users
incur when they receive messages through
Information Exchange

Request Manager. The component of Expedite
for Windows that manages the databases and
Information Exchange sessions.

reset. (1) A type of session recovery that
indicates Expedite should mark unprocessed
orders as pending and enable the mailbox ID.
When the session is resumed, Expedite starts
processing at the beginning of the first order
marked pending. Note that if you were sending
multiple EDI envelopes from a single file, and
the session is interrupted, if you reset the
session, it resumes sending envelopes from the
beginning of the file. (2)A session recovery
state that indicates the error that interrupted the
session prevents the session from being
resumed.

restart. (1) A session recovery state that
indicates Expedite has recorded commit infor-
mation during the session and can resume
processing at the last checkpoint when the
session is resumed. (2) To resume a session at
the last checkpoint.

S
send-side charges. The charges that users
incur when they send messages through Infor-
mation Exchange.

session. The period of time during which a
user of a terminal can communicate with an
interactive system, usually, elapsed time
between logon and logoff.

session-level recovery. A method of restart
and recovery within Expedite for Windows; no
files are committed until the session ends
normally.

session receipt. An acknowledgment provided
by Information Exchange that corresponds to
session start and session end records in
Expedite. The session receipt includes a set of
order receipts, which provide information about
the processing of a single order.

synchronous. A process that is completed
within a regular or predictable time frame.

T
temporary distribution list. A distribution list
that lasts only for the duration of an Information
Exchange session.

trading partner. The business associates with
whom users exchange information electroni-
cally.

trading partner list. A list of business
associates that users can send information to and
receive information from using Information
Exchange.
130

Glossary
trading partner profile. A list that defines
which trading partner pays to send or receive
messages as part of a set of default information
for a trading partner to use to configure send
orders.

U
UCS. Uniform Communication Standard.

Uniform Communication Standard (UCS). A
standard EDI format used in the grocery
industry.

United Nations/Trade Data Interchange (UN/
TDI. An EDI standard for administration,
commerce, and transportation fields developed
by the United Nations Economic Commission
for Europe.

UN/TDI. United Nations/Trade Data Inter-
change.

user ID. A name that identifies a user to Infor-
mation Exchange within an account.

user message class. A category used to group
mail. This category is agreed upon by trading
partners.

user profile. A user description that includes
account ID, user ID, and password information.
The characteristics that designate how a user
works with Information Exchange.

W
wildcard. A special character, such as a
question mark, that can be used to represent one
or more characters for pattern matching.

X
X12. An electronic data interchange standard
that defines a specially-formatted EDI data
stream, approved by the American National
Standards Institute (ANSI).
131

Software Development Kit Programming Guide
132

. .
Index

A
account ID, Information Exchange 65, 82
Add output structure 25
address

destination 79, 81
EDI, converting 81
for sending files 65
formats for Information Exchange 65

address book
database 8
object 7
updating 5
writing interface to 19

Address window 48
AddrType field 80
alias name, Information Exchange 82
alias tables

global 65
Information Exchange 65, 82
organization 65
private 65
providing destination address 83
types 65

alternate translate table 69
application programming interface (API) ix
application, creating 12
AppStat field 38

arguments, EntriesReturned 27, 31
array, response structure 29
ASCII binary files

ASCII-to-EBCDIC translation 68
sending and receiving 68
translating 68

ASCII text files
EBCDIC-to-ASCII translation 67
sending and receiving 67
translating 67

Assign command 26

B
batch sessions. See unattended sessions.
BG segment 79
building sample program 14

C
C programming experience 13
canceling sessions

automated session recovery 38
checkpoint-level recovery 74

case sensitive input fields 25
CDH. See common data header (CDH)
checkpoint-level recovery 70
© Copyright GXS, Inc. 1998, 2005 133

Software Development Kit Programming Guide
canceling sessions 74
committed files 74
post-session processing 72
receipts 74
resetting sessions 72
restarting sessions 74

C-language interface
files 13
using 6

classes, Java 40
Close command 26
CmmtCode field 72, 74
code examples 105
commands

Assign 26
Close 26
Delete 26
List 26
Open 26
Replace 25
Unassign 26

Commitdata option 74
common data header (CDH)

ASCII files 67
compiler, supported 9
configuring your project 12
console Java samples

ReceiveFile prompts 54
SendFile prompts 53

CONTROL subdirectory 72
creating your project (application) 12

D
databases

address book 8
mailbox 8
paging through 27
project 8
Request Manager services 6

Datatype field 68
default recovery setting 70

Delete command 26
deleting

items from mailbox 62
orders 18
sample project and address 15

destination address 79, 81
destination table 83, 84
directories

install 87
LIBPATH 14

displaying session status 38
distributing your project (application) 12
distribution lists 20

address formats 65
description 66
storing 20
temporary 66

DLL. See dynamic link library (DLL)
DOS windows samples for Java interface 53
dropoff box object 7
dropoff boxes

assign mailbox ID to 12
setting up 5

DropRecovery field 70
DropRecovery option 36, 38
Dun and Bradstreet (DUNS) number 80
dynamic link library (DLL)

C-language interface 6
ExpAddField example 69
expc32.dll 13, 14
linking to application 9
makefile samples 13
prerequisite ix
samples 13
SDKBINexpc32.dll 13

E
EBCDIC-to-ASCII translation 68
EDIFACT data, transmitting 79, 80
electronic data interchange (EDI)

address, converting 81
134

Index
data, sending and receiving 79
destination table, using 87
destinations, resolving 82
EDI envelopes

definition 80
using 81

resolving destinations 82
sending and receiving data 79
standards 80

electronic mail. See e-mail
e-mail

application, writing 11
file format 66
sending and receiving 66

EntriesReturned argument 27, 31
error recovery

ExpGetError 62
interactive session 62
messages 62
unattended (batch) session 21

examples
alternate translation table 69
creating destination tables 88
how companies can use Expedite 105
interactive session 63
processing response structure, multiple 30
sending EDI data with destination table 90
unattended session 60

expc32.dll dynamic link library 13, 14
expc32.h header file 13
expc32m.lib link library 14
ExpEndSess function 33
ExpException class 43
ExpGetError function 62
ExpJni.jniCloseCInterface 40
ExpJni.jniOpenCInterface 40
ExpListOrdrShlf 30
exporting (distributing) your project 12
ExpSendOrderRspStruct 29
ExpStartSess function 33

F
fields

AddrType 80
AppStat 38
CmmtCode 72, 74
Datatype 68
DropRecovery 70
input structure 23
Msgkey 62, 78
MultFiles 72, 76
Nickname 80
NumEntries 27, 29, 31
OrdrStatus 36
OrdrType 29
OrigFile 114
Overwrite 72
ProjName 28
Recover 36
Remove eof field 76
SearchOp 28
SearchParm 28
SearchValue 28
Sendedi 80
Session Receipt 36
SortOrder 29
SortParm 29
StartIndex 27, 29, 31
StatusCode 74
Type 29
XlateTbl 68, 69

file-level recovery
committed files 74
description 70
interactive sessions 63
post-session processing 72

function calls, evaluating 31
functions

evaluating calls 31
ExpAddDropBox 34, 59, 68
ExpAddField 23, 69
ExpAddRecvOrdr 34, 59, 67, 68
135

Software Development Kit Programming Guide
ExpAddSendOrdr 34, 59, 68
ExpAsgRecvOrdrToDropBox 34, 59
ExpAsgSendOrdrToDropBox 34, 59
ExpCloseMbox 34
ExpCloseMsgSys 32, 34
ExpDoPurgOrdr 32, 62
ExpDoQuryOrdr 32, 62, 78, 122
ExpDoRecvOrdr 32, 62
ExpDoSendOrdr 32, 62
ExpEndSess 32, 33, 62
ExpGetError 62
ExpListRcptsOnSessRcpt 32, 59, 62
ExpListRecvRcpt 62
ExpListSendRcpt 62
ExpListSessRcpt 32
ExpOpenMbox 34
ExpOpenMsgSys 32, 34
ExpProcDropBox 34, 35, 59
ExpRecoverSessRcpt 35, 36, 37
ExpReplaceField 24
ExpResetMem 23
ExpRetrieveErrTxt 62
ExpStartSess 32, 33, 62
ExpStartSessReqStruct 38
List 26
ProcDropBox 21
return codes 31

G
global alias table 65
graphical user interface (GUI)

Customer Care assistance 11
for session control 1
minimize code 17
using 5
using during setup 17
viewing results of session 32

GUI. See graphical user interface (GUI)

H
hardware requirements 9
header files

common data header (CDH) 67, 68
exp32def.h 13
exp32err.h 13
exp32fnc.h 13
exp32len.h 13
exp32str.h 13
exp32val.h 13
expc32.h 13
SDKINCLUDEexpc32.h 13

I
IBM3270.XLT alternate translate table 68
IESTDTBL translate table 68
Information Exchange

account ID, user ID, password 12
Administration Services 65, 78
alias tables 65
description 1
e-mail files, record length 66
mailbox address 65
mailbox address formats 65
sessions, ending 62
system ID 65
translate table (IESTDTBL) 57, 68

initializing the structure 23
input fields, case sensitive 25
input structure fields 23
install directory 13, 87
installing your project 12
interactive order processing, starting 62
interactive session, managing 32
Interprocess Communications (IPC) 4
ISA segment 79

J
Java Development Kit (JDK) 39
136

Index
Java interface 39
Java Native Interface (JNI) 39
Java native methods

ExpJni.jniCloseCInterface 40
ExpJni.jniOpenCInterface 40

Java objects (database classes)
example 42
list of 56

L
LIBPATH directory 14
link library

expc32m.lib 14
SDKBINexpc32m.lib 13

linking a DLL 9
List command 26
List functions

allocating memory 27
format of List call 26
qualifying a list 28

listing IDs and tables for addresses 83
listing items in mailbox 62

M
mailbox

deleting information 62
listing items in 62

mailbox address
Information Exchange 65

mailbox database 8
makefiles, sample 9
manual recovery 36
Maxmsgs option 74
methods, Java 40
Msgkey field 62, 78
MultFiles field 72, 76
multiple files, receiving 76
multiple sessions 70

N
native methods, Java 40
nickname

address format 65
in address book 7

Nickname field 80
NOXLATE.XLT alternate translate table 68
NumEntries field 27, 29, 31

O
objects

address book 7
description 7
dropoff box 7
order receipt 8
order shelf 7
project 7
receipt shelf 8
session receipt 8
trading profile 8

Open command 26
options

Commitdata 74
DropRecovery 36, 38
Maxmsgs 74
Overwrite 75
Receiveedi 79
Sendedi 79

order processing
interactive 62
unattended 59

order project 7
order receipt object 8
order shelf 18
order shelf object 7
OrdrStatus field 36
OrdrStatus receipt 74
OrdrType field 29
organization alias table 65
OrigFile field 114
137

Software Development Kit Programming Guide
output structures 25
Overwrite field 72
overwrite options 75

P
paging through databases 27, 29
parameters

ParmID 28
postprocessing 38
search 28

ParmID parameter 28
postprocessing parameters 38
post-session processing

checkpoint-level recovery 72
session-level recovery 75

private alias table 65
ProcDropBox function 21
processing orders

interactive sessions 62
unattended sessions 59

processing results
viewing 59

project
configuring 12
creating 12
deleting 15
exporting (distributing) 12
installing 12
order 7
write-protect 58

project database 8
project object 7
projects

description 4
order 7
sample, building 14
sample, deleting 15

ProjName field 28
protocol handler

description 5
starting 5

Q
qualifier table 83
qualifiers

receiver ID 84
structure 28

qualifying a list 28
qualtbl.tbl file 86

R
receipt shelf maintenance 18
receipt shelf object 8
Receipt window 52
receipts

order 74
OrdrStatus 74
retrieving 62

Receive File window 50
receive order

criteria 77
summary 62

Receiveedi option 79
ReceiveFile prompts 54
receiver ID qualifier 84
receiving

ASCII text files 67
e-mail 66
multiple files 76
preparing for 57
specific files 77

Recover field 36
recovery

checkpoint-level 70, 72
committed files 74
default (checkpoint-level) 70
file-level 63, 70, 72
resetting after checkpoint-level 72
session-level 70
unattended sessions, setting up 21

Remove eof field 76
Replace command 25
138

Index
replacing values in the structures 24
reportException 43
Request Manager

C-language interface 6
description 4
number of structures to retrieve 31
starting interactive order processing 62

reset state
considerations 70
manual session recovery 37
unattended session recovery 35

resetting a session 33, 36, 38
resolving EDI destinations 82
response structure array 29
restart state

considerations 70
manual session recovery 36
unattended session recovery 35

restarting sessions
checkpoint-level recovery 74
manual session recovery 36

retrieving specific receipts 62
return codes for functions 31
returning entries (EntriesReturned) 27

S
sample DLLs 13
sample program, building 14
SDKBIN subdirectory 13
SDKBINexpc32.dll dynamic link library 13
SDKBINexpc32m.lib link library 13
SDKINCLUDE subdirectory 13
SDKINCLUDEexpc32.h header file 13
SDKSAMPLECLANG subdirectory 13
search parameters 28
SearchOp field 28
SearchParm field 28
SearchValue field 28
Send File window 49
Send order 81
send order summary 62

Sendedi field 80
Sendedi option 79
SendFile prompts 53
sending

ASCII text files 67
e-mail 66
files to users on another Information

Exchange system 65
preparing for 57

session receipt 18, 62
Session Receipt field 36
session receipt object 8
session recovery

interactive (file-level) 63
session status, displaying 38
session-level recovery 70

committed files 74
post-session processing 75

sessions
canceling, automated session recovery 38
ending Information Exchange 62
error recovery, unattended 21
interactive, managing 32
managing Information Exchange 32
manual recovery 36
post-session processing, checkpoint

level 72
post-session processing, session level 75
resetting 33, 36, 38
resetting after checkpoint recovery 72
resolving problems 5
restarting manually 36
running multiple 70

set up
addresses 17
an address book 20
distribution lists 17
dropoff boxes 18
orders 18
projects 19
trading profiles 17

SHARED subdirectory 87
139

Software Development Kit Programming Guide
software requirements 9
SortOrder field 29
SortParm field 29
StartIndex field 27, 29, 31
stations

description 2
StatusCode field 74
storing distribution lists 20
structures

ExpAddDropBoxReqStruct 36, 38
ExpAddRecvOrdrReqStruct 67
ExpAddSendOrdrReqStruct 68
ExpAddSendOrdrStruct 80
ExpDoQuryOrdrDoneRspStruct 62, 78
ExpDoSendOrdrStruct 80
ExpDropBoxProcRspStruct 59
ExpStartSessReqStruct 38
initializing 23
input fields 23
naming convention 24
ObjectStructure 29
qualifiers 28
response, array of 29

STX segment 79
subdirectories

CONTROL 72
SDKBIN 13
SDKINCLUDE 13
SDKSAMPLECLANG 13
SHARED 87

summary, order processing 62
system ID, Information Exchange 65

T
tables

alias 82, 83
alternate translate 69
bypassing 84
destination 83, 84
qualifier 83
qualtbl.tbl, for UCS data 86

ttable01.tbl, for UCS data 86
temporary distribution list 66
trading partner information, storing 7
trading profile object 8
trading profiles

creating 5
using 20

translate tables
IBM3270.XLT 68
IESTDTBL, Information Exchange 57, 68
NOXLATE.XLT 68
XlateTbl field 68

translating binary data 68
try/catch block 43
ttable01.tbl file 86
Type field 29

U
UCS data, transmitting 79, 80
UN/TDI data, transmitting 79, 80
Unassign command 26
unattended sessions

creating with C-language interface 59
managing Information Exchange

sessions 32
processing list of orders 58

UNB segment 79
user ID, Information Exchange 65, 82

V
viewing processing results 59
VisualAge for Java 39
VisualAge sample

Address window 48
assumptions 43, 45
Receipt window 52
Receive File window 50
Send File window 49
140

Index
W
Windows 95, 98, NT support 9
writing your own interface 11

X
X12 data, transmitting 79, 80
XlateTbl field 68, 69
141

Software Development Kit Programming Guide
142

	Expedite for Windows Software Development Kit Programming Guide
	Contents
	To the reader
	What this book covers
	Who should read this book
	How this book is organized
	Type conventions
	Related books

	Introducing Expedite for Windows
	Understanding Information Exchange
	Understanding the Expedite for Windows model
	Understanding the Expedite for Windows components
	Request Manager
	Protocol handler
	Graphical user interface
	C-language interface
	Java interface

	Defining Expedite for Windows objects
	Defining Expedite for Windows databases
	Defining hardware and software requirements
	Supported compiler

	Getting Started
	Using the Expedite for Windows GUI
	Writing your own interface
	Distributing your project to users
	Creating and exporting your project
	Installing the project
	Configuring the project

	Programming experience requirement
	Understanding the C-language interface files
	expc32.h header file
	expc32m.lib link library

	Building the sample program
	Deleting the sample project and address

	Using the Expedite for Windows graphical user interface
	Using the GUI during setup
	Setting up a project
	Using the address book
	Using distribution lists in the address book

	Working without an address book
	Using trading profiles
	Setting up unattended sessions

	Programming to the C-language interface
	Input structures
	Initializing the structure
	Replacing values in the structures
	Input structure naming conventions
	Case sensitivity in input fields

	Output structures
	List functions
	Returning entries
	Qualifying a list

	Response structure arrays with multiple kinds of objects
	Allocating space

	Evaluating the results of a function call
	Managing Information Exchange sessions
	Interactive sessions
	Interactive session recovery

	Unattended sessions
	Unattended session recovery
	Manual session recovery
	Automated session recovery

	Displaying session status

	Programming to the Java interface
	Overview of the Java interface
	Comparing the C-language interface and the Java interface
	Using Java native methods
	Example of Java interface code

	Handling errors
	Compiling and running the sample Java programs
	Compiling and running sample programs with the JDK
	Compiling and running sample programs with VisualAge

	Using the sample GUI program
	Launching the program
	Using the Address option
	Using the Send File option
	Using the Receive File option
	Using the Receipt window

	Using the sample console programs
	SendFile prompts
	ReceiveFile prompts

	Database classes and methods for each class

	Sending and receiving files with Expedite for Windows
	Preparing to send and receive files
	Processing in an unattended session
	Processing in an interactive session
	Planning for problem determination
	Using unattended (batch) sessions
	Creating unattended sessions
	Viewing processing results
	Example of an unattended session

	Using interactive sessions
	Session recovery for interactive sessions
	Example of an interactive session

	Addressing files
	Using nicknames
	Using account IDs, user IDs, and system IDs
	Using centralized Information Exchange alias tables
	Using distribution lists

	Sending and receiving e-mail
	Creating an e-mail file
	Sending an e-mail file
	Receiving an e-mail file

	Sending and receiving ASCII text files
	Sending and receiving ASCII binary files
	Understanding the translate table
	Using an alternate translate table

	Understanding recovery levels
	Post-session processing for checkpoint-level and file-level recovery
	Resetting sessions after recovery
	Example of a session reset

	Restarting and canceling sessions after recovery
	Checkpoint-level recovery and receipts

	Post-session processing for session-level recovery
	Overwrite options
	Receiving multiple files
	Using Expedite.ini to create file names for multiple files

	Receiving specific files
	Receiving files from a specific time
	Receiving a single, specific file

	Sending and receiving EDI data with Expedite for Windows
	Understanding how Expedite sends EDI data
	Specifying addresses
	Transmitting EDI envelopes

	Using EDI envelopes
	Resolving EDI destinations
	Providing destination address information in tables
	Bypassing tables
	EDIFACT or X12 data
	UN/TDI data
	Intersystem addressing

	Using tables for UCS data
	How Expedite determines destinations without tables

	Using EDI destination tables
	Creating destination tables
	Naming destination tables
	Sending EDI data using a destination table
	Example of sending EDI data with destination table

	Using EDI qualifier tables
	Example of sending EDI data with qualifier table

	Using centralized Information Exchange alias tables
	Sending EDI data with a centralized alias table
	Example of sending EDI data with centralized alias table

	Using Information Exchange distribution lists
	Example of sending EDI data to a distribution list

	Specifying Information Exchange control fields
	Providing a message name
	Providing a message sequence number
	Providing a user class
	User class for EDIFACT and UN/TDI data
	User class for X12 and UCS data

	Inserting blanks following EDI segments
	Using Expedite order receipts

	Receiving EDI data
	Specifying automatic EDI processing
	Specifying CRLF characters
	Specifying only EDI data to be received

	Creating tables for destination resolution
	Understanding the EDI qualifier table entry format
	Example of a qualifier table entry

	Understanding the EDI destination table entry format
	Example of an EDI destination table entry

	Code examples
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5
	Scenario 6
	Scenario 7
	Scenario 8
	Scenario 9

	Glossary
	Index

